Markov Chain Monte Carlo Methods:
Gibbs Sampling

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University


http://cms.unipune.ac.in/~mihir
http://cms.unipune.ac.in/
http://www.unipune.ac.in/

Basic MCMC: Gibbs sampling for bivariate PDF

Gibbs sampling for a bivariate PDF fxy(x,y)

Assume that the two conditional PDFs fy|x(y|x) and fx|y(x|y) are
(easily) sampleable.

Start with an arbitrary initial value x;.

©® Sample y1 ~ fy x(:|x1) = (x1,1)
@ Sample x; ~ fx|y(-[y1)
© Sample y» ~ fy x(-[x2) = (x2,¥2)
O Sample x3 ~ fx|y(:[y2)
© Sample y3 ~ fyx(-[x3) = (x3,)3)

0 ..

Repeat as required.



Basic MCMC: Gibbs sampling for bivariate PDF

Expressing the previous algorithm concisely

@ Start with an arbitrary initial value x;.

® (Xj+1,Yi+1) is obtained from (x;, y;) by sampling from the
conditionals:

yirr ~ fyx(xi)

xiv1 ~ fxy(lyit1)

© Repeat step 2 as required.



Example: Gibbs sampling for a bivariate normal density
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Let us consider the bivariate normal PDF
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where X1 is the matrix inverse of X:
_ 1 1 —p
rl= .
1—p? [ —» 1 }

The determinant |X| =1 — p2.

https://www2.stat.duke.edu/courses/Springl2/stal04.1/Lectures/Lec22.pdf


https://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec22.pdf

Example: Gibbs sampling for a bivariate normal density

Marginal PDFs

N(MX: 1)
N(py,1)

>
—~
<
SN N
-



Example: Gibbs sampling for a bivariate normal density

Conditional PDFs

fxiy(xly) = 27T(i—p2) exp [;1__2/2)] = N(py,1— p2)
fyix (v[x) 271_(1 ) exp { 22/1__?(2)] = N(px,1— p?)

We know how to sample from these univariate normal PDFs ...

https://www2.stat.duke.edu/courses/Springl2/stal04.1/Lectures/Lec22.pdf


https://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec22.pdf

Example: Gibbs sampling for bivariate normal

rbvnorm.gibbs <- function( n, x1, mu = ¢c( 0, 0 ), rho = 0 )
{
# Gibbs sampler for a correlated bivariate normal N( mu, Sigma2 )
# where
# mu = [ mul mu2 ]
# and
# covariance matrix Sigma"2 = [ 1 rho ]
# [ rho 11
stopifnot( abs( rho ) < 1, length( mu ) == 2, is.numeric( mu ) )
r <- matrix( nrow = n, ncol = 2 )

sd <- sqrt( 1 - rho"2 )

rf1,1] <- x1

r[1,2] <- rnorm( 1, mean = rho * r[1,1], sd = sd )
for ( i in 2:n )
{
r[i,1] <- rnorm( 1, mean = rho * r[i-1,2], sd = sd )
r[i,2] <- rnorm( 1, mean = rho * r[i, 1], sd = sd )
}

cbind( r[,1] + mul1l, r[,2] + mul2] )
}



Example: Gibbs sampling for bivariate normal
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Example: Gibbs sampling for bivariate normal
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Density

Example: Gibbs sampling for bivariate normal
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Example: Gibbs sampling for bivariate normal

Suppose that the Gibbs sampling trajectory is

X1 —=>Y1—>X2o—=>Yo—> ... =2 Xt =7 Yt — ...
e Time evolution of the joint PDF of (X, Y) under this Markov chain:
v pxtria 1—p*  p(1-p*)
Ly +p2t+1X1 ) p(l _ p4t) 1— p4t
for |p| < 1.

® As t — oo, this becomes

(L))

which is the target PDF.



More examples

in the handout
on the web



Gibbs for a trivariate PDF

Gibbs sampling for fxyz(x, y,z). Assume that the conditionals

fzixy (2%, ¥), fvixz(v|x, 2), fx|vz(xly, 2)

are (easily) sampleable.
@ Start with arbitrary initial values xi, y1.

® (Xi+1,Yi+1,2i+1) is obtained from (x;, i, z;) by sampling from
the conditionals:

zitn ~  fzxy (X, yi)
Yivr ~ fyixz(:[xi, ziv1)
Xiv1 ~  fxjyz(|yit1, ziv1)

© Repeat step 2 as required.



Generalizing Gibbs for a multivariate PDF

Suppose

f(x1,...,xx) : Target multivariate PDF

fi(xij|x_;) : conditional PDF of x; given everything else (x_;)

New notation x_; = “all variables except the ith"”



Gibbs for a multivariate PDF: Sequential scan

@ Start with arbitrary initial values x, ..., xk.

@ Fori=1,... k
Sample x; ~ fi(-|x_;)

© Repeat step 2 as required.



Gibbs for a multivariate PDF: Random scan

@ Start with arbitrary initial values x, ..., xk.

® For i € a random permutation of 1,..., k:
Sample x; ~ fi(-|x_;)

© Repeat step 2 as required.



Gibbs for a multivariate PDF

® The basic variant discussed changes one variable at a time.

® Block versions, where the conditionals are expressed over
groups of variables instead of single variables, are also possible.



Why Gibbs works

® Gibbs algorithm sets up a Markov chain, because the next
state depends only on the current state.

® Gibbs can be shown to be a special case of
Metropolis-Hastings with acceptance probability = 1.



Gibbs as Metropolis-Hastings with P(accept)=1

f(x1,...,xk) : Target multivariate PDF

fi(xij|x—;) : conditional PDF of x; given everything else :: x_;

Suppose the current state of the Markov chain is (xi, ..., xk).

The Gibbs sampler is now ready to change the ith variable x;.

Think of Gibbs as Metropolis-Hastings with proposal PDF
q(Ixi, x-i) = fi(-[x=7).

Generate a candidate from this proposal PDF,

X~ ().



Gibbs as Metropolis-Hastings with P(accept)=1

Recall the Metropolis-Hastings form of the acceptance probability

f(proposed) q(current|proposed)}

a(proposed|current) = min< 1,
(prop [eu ) I { f(current) q(proposed|current)

In our Gibbs sampling setting,
e Current state of the chain: (x;,x_;)

® Proposed state of the chain: (x/,x_;)



Gibbs as Metropolis-Hastings with P(accept)=1

For convenience, let us write f(xi,...,xx) as f(xj, x_;).

M-H acceptance probability for Gibbs sampling is
a(x{, x_i|xj, x_;) = min(1, &), where

) :
f(xi,x—i)  q(x!, x—i|xi, x_i)
F(xi,x=i)  fi(xi|x=i)
T TGioc) )
_ filgben) ) | filxilx-i)
filxilx=i)f(x=i) ~ fi(x{|x-)
= 1.

That is, a(x/, x_i|xi,x_;) = 1. This is true for any i.

https://ermongroup.github.io/cs323-notes/probabilistic/gibbs/
http://theanalysisofdata.com/notes/metropolis.pdf


https://ermongroup.github.io/cs323-notes/probabilistic/gibbs/
http://theanalysisofdata.com/notes/metropolis.pdf

Gibbs as Metropolis-Hastings with P(accept)=1

Convergence, caveats, and burn-in/equilibration considerations
applicable to M-H are also applicable to Gibbs — except for tunable
parameters in the proposal PDF of M-H.



Further reading

® A classic
Explaining the Gibbs Sampler. Casella & George, The American Statistician,
Vol. 46, No. 3 (Aug., 1992), Pp- 167-174. nttp://wwu.jstor.org/stable/2685208

® A perspective on comparison between Gibbs and M-H:
https://stats.stackexchange.com/questions/104815/

gibbs-sampling-versus-general-mh-mcmc

® Advanced texts with rigorous treatment of the subject

® Monte Carlo Statistical Methods. Robert & Casella, Springer
2004

® Advanced Markov Chain Monte Carlo Methods. Liang, Liu, &
Carroll, Wiley 2010


http://www.jstor.org/stable/2685208
https://stats.stackexchange.com/questions/104815/gibbs-sampling-versus-general-mh-mcmc
https://stats.stackexchange.com/questions/104815/gibbs-sampling-versus-general-mh-mcmc

