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Basic MCMC: Gibbs sampling for bivariate pdf

Gibbs sampling for a bivariate pdf fXY (x , y)

Assume that the two conditional pdfs fY |X (y |x) and fX |Y (x |y) are
(easily) sampleable.

Start with an arbitrary initial value x1.

1 Sample y1 ∼ fY |X (·|x1) =⇒ (x1, y1)

2 Sample x2 ∼ fX |Y (·|y1)
3 Sample y2 ∼ fY |X (·|x2) =⇒ (x2, y2)

4 Sample x3 ∼ fX |Y (·|y2)
5 Sample y3 ∼ fY |X (·|x3) =⇒ (x3, y3)

6 ...

Repeat as required.



Basic MCMC: Gibbs sampling for bivariate pdf

Expressing the previous algorithm concisely

1 Start with an arbitrary initial value x1.

2 (xi+1, yi+1) is obtained from (xi , yi ) by sampling from the
conditionals:

yi+1 ∼ fY |X (·|xi )
xi+1 ∼ fX |Y (·|yi+1)

3 Repeat step 2 as required.



Example: Gibbs sampling for a bivariate normal density

Let

x =

(
x
y

)
µ =

(
µX
µY

)
Σ =

[
1 ρ
ρ 1

]
.

Let us consider the bivariate normal pdf

fX(x) =
1

2π
|Σ|−1/2 exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
where Σ−1 is the matrix inverse of Σ:

Σ−1 =
1

1− ρ2

[
1 −ρ
−ρ 1

]
.

The determinant |Σ| = 1− ρ2.
https://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec22.pdf

https://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec22.pdf


Example: Gibbs sampling for a bivariate normal density

Marginal pdfs

fX (x) ≡ N(µX , 1)

fY (y) ≡ N(µY , 1)



Example: Gibbs sampling for a bivariate normal density

Conditional pdfs

fX |Y (x |y) =
1√

2π(1− ρ2)
exp

[
− x − ρy
2(1− ρ2)

]
≡ N(ρy , 1− ρ2)

fY |X (y |x) =
1√

2π(1− ρ2)
exp

[
− y − ρx
2(1− ρ2)

]
≡ N(ρx , 1− ρ2)

We know how to sample from these univariate normal pdfs ...

https://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec22.pdf

https://www2.stat.duke.edu/courses/Spring12/sta104.1/Lectures/Lec22.pdf


Example: Gibbs sampling for bivariate normal

rbvnorm.gibbs <- function( n, x1, mu = c( 0, 0 ), rho = 0 )

{

# Gibbs sampler for a correlated bivariate normal N( mu, Sigma2 )

# where

# mu = [ mu1 mu2 ]

# and

# covariance matrix Sigma^2 = [ 1 rho ]

# [ rho 1 ]

stopifnot( abs( rho ) < 1, length( mu ) == 2, is.numeric( mu ) )

r <- matrix( nrow = n, ncol = 2 )

sd <- sqrt( 1 - rho^2 )

r[1,1] <- x1

r[1,2] <- rnorm( 1, mean = rho * r[1,1], sd = sd )

for ( i in 2:n )

{

r[i,1] <- rnorm( 1, mean = rho * r[i-1,2], sd = sd )

r[i,2] <- rnorm( 1, mean = rho * r[i, 1], sd = sd )

}

cbind( r[,1] + mu[1], r[,2] + mu[2] )

}



Example: Gibbs sampling for bivariate normal

N

((
−1,+ 1

2

)
,

[
+1 − 1

2
− 1

2 +1

])
:: Gibbs :: Initial trajectory
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Example: Gibbs sampling for bivariate normal

N

((
−1,+ 1

2

)
,

[
+1 − 1

2
− 1

2 +1

])
:: Gibbs :: A larger sample
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Example: Gibbs sampling for bivariate normal

N

((
−1,+ 1

2

)
,

[
+1 − 1

2
− 1

2 +1

])
:: Gibbs :: Marginal histograms
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Example: Gibbs sampling for bivariate normal

Suppose that the Gibbs sampling trajectory is

x1 → y1 → x2 → y2 → . . .→ xt → yt → . . .

• Time evolution of the joint pdf of (X ,Y ) under this Markov chain:

N

([
µX + ρ2tx1
µY + ρ2t+1x1

]
,

[
1− ρ4t ρ(1− ρ4t)
ρ(1− ρ4t) 1− ρ4t

])
for |ρ| < 1.

• As t →∞, this becomes

N

([
µX

µY

]
,

[
1 ρ
ρ 1

])
which is the target pdf.



More examples

in the handout
on the web

...



Gibbs for a trivariate pdf

Gibbs sampling for fXYZ (x , y , z). Assume that the conditionals

fZ |XY (z |x , y), fY |XZ (y |x , z), fX |YZ (x |y , z)

are (easily) sampleable.

1 Start with arbitrary initial values x1, y1.

2 (xi+1, yi+1, zi+1) is obtained from (xi , yi , zi ) by sampling from
the conditionals:

zi+1 ∼ fZ |XY (·|xi , yi )
yi+1 ∼ fY |XZ (·|xi , zi+1)

xi+1 ∼ fX |YZ (·|yi+1, zi+1)

3 Repeat step 2 as required.



Generalizing Gibbs for a multivariate pdf

Suppose

f (x1, . . . , xk) : Target multivariate pdf

fi (xi |x−i ) : conditional pdf of xi given everything else (x−i )

New notation x−i ≡ “all variables except the ith”



Gibbs for a multivariate pdf: Sequential scan

1 Start with arbitrary initial values x1, . . . , xk .

2 For i = 1, . . . , k :
Sample xi ∼ fi (·|x−i )

3 Repeat step 2 as required.



Gibbs for a multivariate pdf: Random scan

1 Start with arbitrary initial values x1, . . . , xk .

2 For i ∈ a random permutation of 1, . . . , k :
Sample xi ∼ fi (·|x−i )

3 Repeat step 2 as required.



Gibbs for a multivariate pdf

• The basic variant discussed changes one variable at a time.

• Block versions, where the conditionals are expressed over
groups of variables instead of single variables, are also possible.



Why Gibbs works

• Gibbs algorithm sets up a Markov chain, because the next
state depends only on the current state.

• Gibbs can be shown to be a special case of
Metropolis-Hastings with acceptance probability = 1.



Gibbs as Metropolis-Hastings with P(accept)=1

• f (x1, . . . , xk) : Target multivariate pdf

• fi (xi |x−i ) : conditional pdf of xi given everything else :: x−i

• Suppose the current state of the Markov chain is (x1, . . . , xk).

• The Gibbs sampler is now ready to change the ith variable xi .

• Think of Gibbs as Metropolis-Hastings with proposal pdf

q(·|xi , x−i ) = fi (·|x−i ).

• Generate a candidate from this proposal pdf,

x ′i ∼ fi (·|x−i ).



Gibbs as Metropolis-Hastings with P(accept)=1

Recall the Metropolis-Hastings form of the acceptance probability

a(proposed|current) = min

{
1,

f (proposed)

f (current)
× q(current|proposed)

q(proposed|current)

}

In our Gibbs sampling setting,

• Current state of the chain: (xi , x−i )

• Proposed state of the chain: (x ′i , x−i )



Gibbs as Metropolis-Hastings with P(accept)=1

For convenience, let us write f (x1, . . . , xk) as f (xi , x−i ).

M-H acceptance probability for Gibbs sampling is
a(x ′i , x−i |xi , x−i ) = min(1, α), where

α =
f (x ′i , x−i )

f (xi , x−i )
×

q(xi , x−i |x ′i , x−i )
q(x ′i , x−i |xi , x−i )

=
f (x ′i , x−i )

f (xi , x−i )
× fi (xi |x−i )

fi (x ′i |x−i )

=
fi (x
′
i |x−i )f (x−i )

fi (xi |x−i )f (x−i )
× fi (xi |x−i )

fi (x ′i |x−i )
= 1.

That is, a(x ′i , x−i |xi , x−i ) = 1. This is true for any i .

https://ermongroup.github.io/cs323-notes/probabilistic/gibbs/

http://theanalysisofdata.com/notes/metropolis.pdf

https://ermongroup.github.io/cs323-notes/probabilistic/gibbs/
http://theanalysisofdata.com/notes/metropolis.pdf


Gibbs as Metropolis-Hastings with P(accept)=1

Convergence, caveats, and burn-in/equilibration considerations
applicable to M-H are also applicable to Gibbs – except for tunable
parameters in the proposal pdf of M-H.



Further reading

• A classic
Explaining the Gibbs Sampler. Casella & George, The American Statistician,

Vol. 46, No. 3 (Aug., 1992), pp. 167-174. http://www.jstor.org/stable/2685208

• A perspective on comparison between Gibbs and M-H:
https://stats.stackexchange.com/questions/104815/

gibbs-sampling-versus-general-mh-mcmc

• Advanced texts with rigorous treatment of the subject

• Monte Carlo Statistical Methods. Robert & Casella, Springer
2004

• Advanced Markov Chain Monte Carlo Methods. Liang, Liu, &
Carroll, Wiley 2010

http://www.jstor.org/stable/2685208
https://stats.stackexchange.com/questions/104815/gibbs-sampling-versus-general-mh-mcmc
https://stats.stackexchange.com/questions/104815/gibbs-sampling-versus-general-mh-mcmc

