Optimal Harvesting

Natural resources for human use:

Nonrenewable: fossil fuel, minerals

Renewable (Forest, crops, fisheries)

over exploitation \rightarrow exhaustion/ extinction

Whales, anchovies, sugar cane

Cases of over-exploitation

Species	Peak catch	1981 catch
Blue whale(1931)	29,000 (#)	Nil
Fin whales(1938)	27,000 (#)	Nil
Hokkaido herring(1913)	850,000 tons	Nil
California sardine (1936)	640,000 tons	Nil
North sea herring (1962)	1500,000 tons	Negligible

Peruvian Anchovy Fishery

A.P.Gore

S.A.Paranjpe

Tuskers poached for ivory- very few left in south India.

NTFP collection by tribal groupsdecline in genetic quality of Amla fruit

Sugarcane farming soil salinity, over supply

Prudent use essential- but how?

Tragedy of commons

Search for optimal strategy

MSY

Controversy on export of

Indian bull frog: Rana tigrina

Will It disappear?

A.P.Gore

Frog-leg Export

Export to : USA, EEC, Japan

Export from : India, Bangladesh, Indonesia etc.

Export from India

Year	volume(tons)
1963	514
1970	2545
1981	4368
1983	3678

Pro-export lobby: Traders, MPEDA (marine products export development authority)

Arguments in favor: •Earning foreign exchange •Employment in frog catching

Anti export lobby: SPCA, conservationist

Arguments against:

- •Threat of frog extinction
- •Possible explosion of rice pest population

Policy decision: EXPORT BANNED

Quantitative basis: none to our knowledge

Approach adopted in Gore & Prayag (1993) Step 1: Estimate density – capture recapture method

> Step 2: use population dynamics model with harvesting (nonlinear version) to arrive at optimal strategy Biometrics (1975) Doubleday, (1980) Reed

Density estimation capture – recapture model

•Standard model:

Capture occasion	Before sampling		After sampling	
	Marked	unmarked	Fresh captures	recaptures
First	0	Ν	R	0
Second	R	N-R	u ₁	$m_1 = n_1 - u_1$
Third	(1-k) (R+u ₁)	(1-k)(N-R-u ₁)	u ₂	$\mathbf{m}_2 = \mathbf{n}_2 - \mathbf{u}_2$

• k – fraction of frogs removed (harvested)

Density estimation modified capture – recapture model

•Modified model: introduction of 'escapement'-e
and compensatory arrivals

Capture	Before sampling		After sampling	
occasion	Marked	unmarked	Fresh captures	recaptures
First	0	Ν	R	0
Second	R(1-e) =R*	N-R *	u ₁	$m_1 = n_1 - u_1$
Third	(1-k) (R*+u ₁ -n ₁ e)	(1-k) (N-R*-u ₁ + n ₁ e)	u ₂	$m_2 = n_2 - u_2$

$$p_1 = R^*/N$$
, $p_2 = (R^* + u_1 - n_1 e)/N$:

capture probabilities at 2nd and 3rd occasion

Maximum likelihood estimation

•L (N,e | n_1, n_2, R) = C. $p_1^{m1} (1-p_1)^{u1} p_2^{m2} (1-p_2)^{u2}$

•N,e estimated by search Estimates in 3 villages of Maharashtra

Village	Est(N)(5ha)	Est(e)	Density/ha
Poinje	539	0.66	107.8
Kolwan	773	0.48	154.6
Kambe	461	0.47	92.2

•Est(e) quite high•Density 100/ha used for further calculations

Assessment of sustainable harvest (Doubleday model)

- Leslie matrix approach
 - M- matrix of fecundity & survival
 - •<u> θ </u>- diagonal (θ_1 , θ_2 ,..., θ_{m+1}) $\forall \theta j$:fraction from age class j that escapes harvest
 - C vector of age wise weights
 - V –vector of age structure

• Problem :

•Maximize C'(I - θ)MV (yield)

- •By choosing θ such that
- •<u>MV</u> <u>V</u> \ge 0 increasing population
- $\forall \theta \ \underline{MV} \underline{V} \ge 0$ harvesting stabilizes population

• θ to be obtained using LPP

Results

•First attempt: Age groups: froglets, 1 yr old, 2 yr old,6 yr old, above 6 yr

•Harvest policy: (I- θ) = diag(0.92, 0.02, 0, 0, 1, 1, 1, 1)

Harvest all 4 yr or older frogs, 92% of froglets

Froglets – useless, yield not worth efforts

If not harvested- population explodes

•This solution not of much practical value

Modification:

Introduce density dependence
•E- # recruits in froglet class
•g(E) – proportion surviving
•g(E) = α exp(-βE)

A simplifying Constraint

 – all frogs above a threshold age should be harvested

Good choice 2 years (wt 100gm or above)

Sustained yield – about 12 Kg/ha

• Matches with field practice of traders

Effect on insects?

- Argument:
 - Frog predator of insect
 - Frog harvest may lead to increased insect biomass
- •From stomach contents food composition can be estimated

Food composition of frogs (proportion of body wt)

Frog wt (gm)	crab	insect	larvae
80	0.0134	0.0212	0.0141
125	0.0596	0.0077	0.0027
250	0.0427	0.0067	0.0019
450	0.0442	0.0037	negligible

Frog population structure

•No harvesting	(28,28,28,28,8,5,2,1)
•With harvesting	
(our policy)	(93,93,0,0,0,0,0,0)

Food consumption by frogs per day (kg/ha)

	crab	insects	Larvae
No harvest	1.12	0.18	0.08
harvest	0.79	0.25	0.14

• Harvesting increases insect predation !

Findings

• Optimal strategy: catch frogs of 100 gm or above

•Ensures sustainable yield

• **Comment: This was the practice of exporters**

•Reason: smaller frogs had no demand

•Pest control aspect

frog diet- insects and other prey
% share of insects ↓ as weight of frog ↑
large frogs eat crabs

Inference: Removal of large frogs → more small frogs
 → higher consumption of insects
 → no danger on pest control front