Models in behavioral ecology

 Animal behavior – feeding, foraging, reproduction, parenting, self defense etc.

•Assumption – behavior optimal in some sense

•Why?

Behavior inherited and subject to natural selection

•Sub-optimal behavior disappears

•Diet choice: two prey types- large and small

- Small prey easy to find, less reward
- Large prey rare, more reward
- •Optimal choice maximize average energy gain / effort

•Central place foraging:

- •Constraint total time
 - Divided into travel time (fixed)+
 - food gathering time (decision variable)

Food collection efficiency decreases as

• gathering time increases

Maximize the ratio :food gathered / total time
Optimal gathering time less if patch is closer

Clutch size model

•Vulture –1-2, Eagle – 2-3, Myna – 4-5

•(Contrast Fish – thousands)

•Aim : maximize # viable offsprings

•Too many offspring- feeding inadequate (parental capacity)

•Vigilance

Squirrel – looks up frequently, fear of predation
Vigilance reduces feeding rate
Decision variable- frequency of such acts

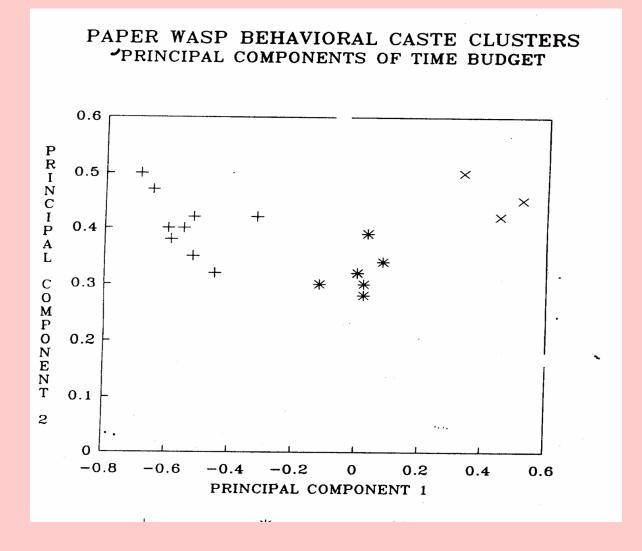
Will the solution change if animal moves in a herd
Yes. Less vigilance expected.
Will the solution change with state of hunger?
Yes. Less vigilance expected when hungry.

Behavioral caste

•Honey bees: two castes

- Only one bee lays eggs-Queen, all others-workers
- Morphological differences
- Castes predetermined, no choice

•Paper wasp:

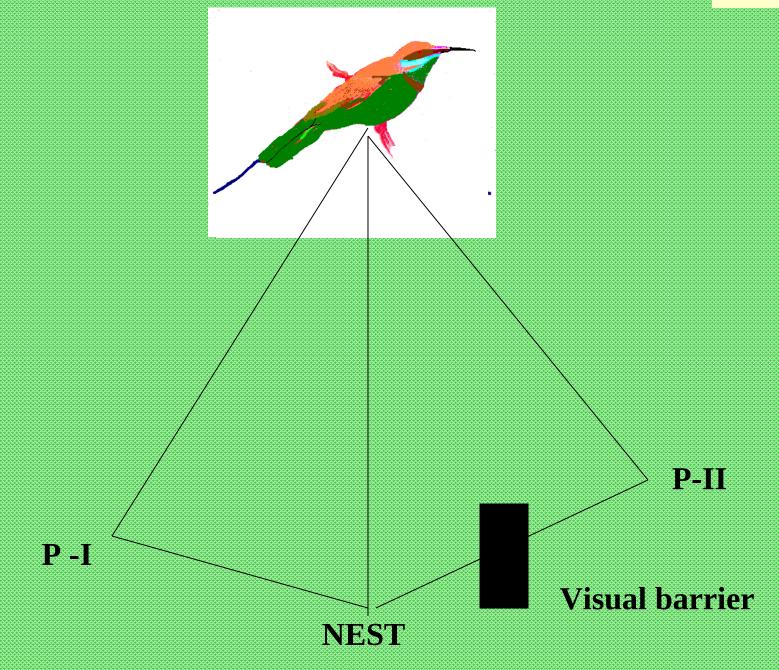

- Egg laying ability common
- Only some lay eggs even when all are given opportunity
- What makes a wasp prone to laying eggs?
- Morphological characters? No.
- Parental nest properties? Yes.

• More empty cells in parent colony, higher chance of egg laying

Only two castes in paper wasps?

- •List of behavior types: sitting with or without raised antennae Giving/ receiving food, attacking, absent from nest, cleaning etc
- Time budget
- •Vector valued random variable time spent by one individual in various activities
 - •Principal component analysis
 - •Three clusters identified
 - •Treated as behavioral castes
 - •Caste names selected post facto

STATSPUNE



Can bee eaters read predator's mind?

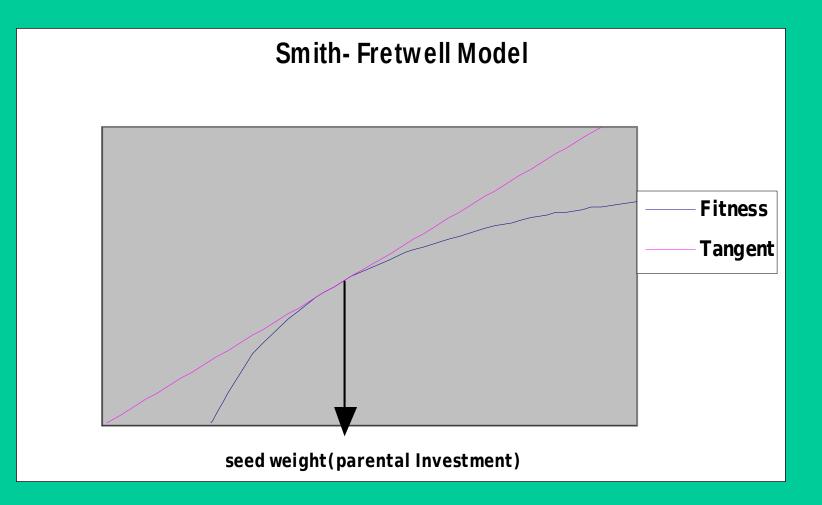
- Do animals have mind?
- Can they think?
- Can this be verified experimentally?

- •Bee eater in breeding season
- •Busy foraging, feeding nestling
- •Waiting at a perch near nest, on return trip
- Notices predator
- •Predator may be
 - •Watching nest
 - •Not watching nest
 - •Unable to watch nest

STATSPUNE

Observations

- Average time taken to enter the nest
- •Case I : predator watching nest –11.7 min, n=35
- •Case II: Predator cannot see nest 8.5min, n=35
- •Case III: predator far away, bird cannot see predator- 1.7min, n=35
- •Case III value lower than others
- •Bird responds to what predator sees


Modeling seed weight

- Plant reproductive traits
 - •Flower number
 - •Ovule number
 - Seed number /weight
- All vary enormously across species
 Sesame very small seed, many in a pod
 Mango large seed, only one
 Groundnut intermediate number and weight
- Groundnut –seed number per pod : 1-4
- Seed weight varies from pod to pod
- Why?

Single seed story: Smith -Fretwell Model

- •Fruits with a single seed
- •What determines the optimal weight of the seed?
- •Two opposing considerations
 - •Investment by and benefit to parent
 - •Investment seed weight
 - •Benefit fitness of the offspring
- •Aim: maximize fitness / Investment
- •Assumption
 - •No benefit unless Investment > threshold
 - •Benefit increases with Investment
 - •at a decreasing rate

•Model : saturating hyperbola (shifted)

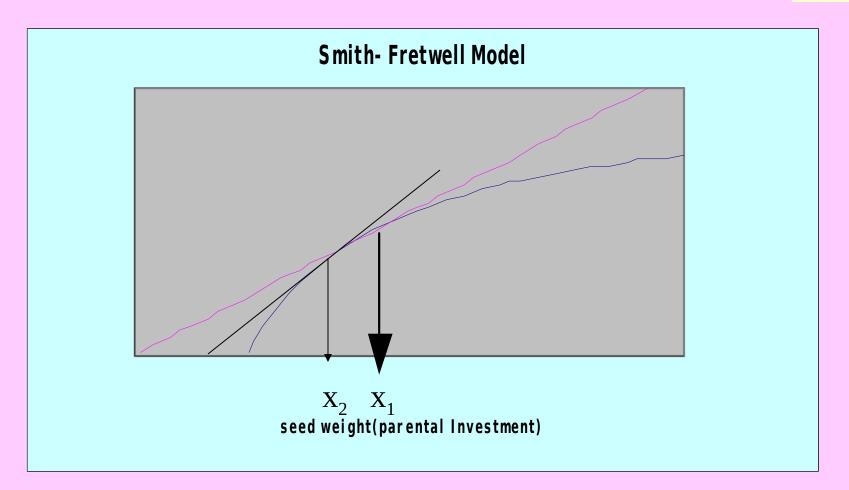
•Arrow : optimum seed weight

Limitations of Smith-Fretwell model

•Assumes :

- Constant reproductive resource level
 - no allowance for change in resource status
- Identical fitness function for all seed genotypes
- Fitness independent of population density
- Fitness unaffected by environmental variation

•Overlooks:


- Fruits with multiple seeds
- Overhead cost (flower/peduncle/seed cover-pod)

Modification needed

Extended Smith-Fretwell Model

- Overhead cost : **C**
- Number of seeds : **i**
- Investment in each seed : **x** + **C**/**i** , **x** –**seed weight**

- How to find optimum x?
- Draw tangent to fitness curve from (-C/i, 0)
- Can vary with i

x₁: optimum seed weight for single seed podx₂: optimum for 2 seed pod

• Fitness function:

•Y= $\{k^{*}(x-a)\}/\{b+x-a\}; x>a$

- k : fitness at high level of investment
- a : limit below which seed is unviable
- a + b : seed weight giving fitness k/2
- •Aim : maximize $f = Y/{x+C/i}$
- Optimum seed weight given by
 x = a + [b(a + C/ i)]^{1/2}
- Relates optimum seed weight to # seeds in a pod
- Implies $x \downarrow as i \uparrow$

Alternative models

• If 'a' is small compared to 'b' and 'C', earlier model reduces to

- X * \sqrt{i} = constant or in general X * i^q = constant (d)
- This may be called 'Generalized Smith-Fretwell model'

• Competition model:

- Investment per fruit same regardless of # seeds in it
- Leads to competition for resource within fruit
- x*i = constant (e)
- Data : seed number and average seed weight /pod
- •Three species : Raphanus, Sesamum, Enterolobium
- •Three models fitted by least squares

Comparison of models

Model and	Species		
estimates	Raphanus	Sesamum	Enterolobium
Extended S-F			
Extended 5-r			
a	0.425	0.0001	311.4
Ь	6.63	0.75	663.4
С	8.0	1500	828.0
% RSS	3	52.5	32
Generalized S-F			
q	0.35	0.6	.07
d	7.3	47.0	977
% RSS	4	52.2	36
Competition			
e	21.6	197.4	8302
% RSS	-	98.5	_

Results

- Extended S-F model : uniformly good
- Generalized S-F model : reasonable
- Competition model poorest
- Implications of extended Smith- Fretwell model
- •Optimal seed weight an upper limit
- Uneconomical (for parent) to invest more
- Constraint due to other factors (if any) may lower realized weight
- Optimization process- a flexible strategy
 Optimum can vary from fruit to fruit
- Offers explanation for observed negative correlation between seed number and seed weight
- Competition as an explanation is invalid