Modeling number of seeds in a pod

• Model: mathematical representation of reality

Ecological models: two types Explanatory (evolutionary, survival of the fittest) Descriptive (summarizing)

- Clutch size in birds
 - •Vulture –1-2, Eagle 2-3, Myna 4-5
 - •(Contrast: Fish thousands)
- Aim : maximize # viable offsprings
 Too many offspring- feeding inadequate (parental capacity)

An explanatory model for clutch size in birds

- C : clutch size
- p: prob of survival of an offspring =1- γ C
- γ : related to parental capacity
- X: # surviving offspring
- •Objective function E(X)
- E (X) = C (1- γ C)
- E(X) : maximum at $C = 1/(2\gamma)$
- Parental capacity decides optimum clutch size
- Model prediction:
 - Capacity very low : clutch size zero avoid reproduction
 Bad season, shortage of time

A descriptive model for plants

- Clutch size in plants: number of seeds in a pod/fruit
 - •Value varies
 - •From species to species
 - •From pod to pod in the same species

Species (ovule #)	Number of seeds											
	1	2	3	4	5	6	7	8	9	10	11	12
Caesalpinia decapetala (C.d.) 8	1	1	0	2	8	16	32	7	-	-	-	-
Malletia ovalifolia(M.o.) 5	41	41	12	1	0	I		-	I	_	-	-
Lablab niger (L.n.)5	1	4	22	41	1	I	I	-	-	_	I	-
Albezzia lebbek (A.l.) 12	4	5	11	9	17	19	16	17	20	15	9	1

- •C.d. and L.n. : negatively skewed
- •M.o. : positively skewed
- •A.l. : multimodal
- •How to summarize this variety of situations?

Simplest model

- Ovule ~ egg
- Pollen ~ sperm
- On fertilization : one seed per ovule
- Assumption :
 - Each ovule a Bernoulli trial
 - Ovule number fixed for a species :n
 - no shortage of pollen
- If fertilized and seed formed : success, otherwise failure
- Each pod : a binomial experiment (n,p)
- p = prob. of success

Pods with zero seeds : not observable because pod drops offZero truncated binomial

•P(X= r) = ${}^{n}C_{r} p^{r} (1-p)^{n-r} / [1-(1-p)^{n}]$

•How good is this model?

Fitting zero truncated binomial model

How to estimate p? Use moment estimator i .e. solve the eqn. Average $x = n*p/[1-(1-p)^n]$

Species	C.d.	M.o.	L.n.	A.l.
Est(p)	0.80	0.27	0.71	0.57
Ovule #	8	5	5	12
Chisquare	3.85	2.83	23.05	95.59
d.f.	3	2	3	7

- •C.d., L.n. negatively skewed: p>0.5
- •M.o. positively skewed : p<0.5
- •Model acceptable for C.d. and M.o. (and many more)
- •For L.n. and A.l.: modification needed
 - •Relax some assumption

Truncated binomial model: mixture over n

•Ovule # : not quite fixed for a species, varies a bit

•We used largest **observed** value

La	blab niger	Albezzia lebbek			
#ovules	Proportion of flowers	#ovules	Proportion of flowers		
3	3/16	11	2/3		
4	3/4	12	1/3		
5	1/16	-	-		

 $P(X=r) = \Sigma \alpha_i B(n_i,p)$

Fitting mixture over n

Species	L.n.	A.I.		
Est(p)	0.92	0.60		
Ovule #	3,4,5	11,12		
Chisquare	1.52	89.70		
d.f.	2	5		

- •Mixture model adequate for Lablab niger
- •Clearly inadequate for Albezzia lebbek
- Further modification needed
- Which assumption to relax?
- Adequacy of pollen supply
- In A.l. pollen grains come in packs of 4

Pollen limiting model

- If only one pack of pollen received (prob. λ_4): B(4,p)
- If two packs received (prob. λ_8): B(8,p)
- If three or more received (prob. λ₁₂): Pollen are not limiting, ovules are.
 2/3 B(11,p) + 1/3 B(12,p)

Model:

 $P(X=r) = \lambda_4 B(4,p) + \lambda_8 B(8,p) + (1 - \lambda_4 - \lambda_8)[2/3 B(11,p) + 1/3 B(12,p)]$

Estimates: p = 0.76, λ_4 = 0.18, λ_8 = 0.32

Chisquare value 3.35 with 6 d.f.

Satisfactory fit

Butterfly intervention model

•Attempt at physical *interpretation* of seed number distribution

Negatively skewed: Avoidance by parent of few-seeded fruits
Economical use of packaging material (parent interest)

•Positively skewed : A few dominant seeds causing abortion of others (offspring interest)

•Unimodal symmetric : balance between parent interest and offspring interest.

What about bimodal distribution?Does it exist?

Distribution of seeds /pod in Caeslapinia pulcherima

Seed #	1	2	3	4	5	6	7	8	9
Frequency	10	25	27	9	12	17	31	12	1

Binomial mixture over p

•Model :

- •P(X=r) = ${}^{n}C_{r} \{ \lambda p_{1}^{r}(1-p_{1})^{n-r} + (1-\lambda) p_{2}^{r}(1-p_{2})^{n-r} \}$
 - r = 1,2,...n
 - n: # ovlules
 - r = 0 (pods with zero seeds not available)
 - p1,p2: Prob. of ovule fertilizing, maturing to seed

Fitting the model (zero truncated)

Est(λ)	Est(p ₁)	Est(p ₂)	Chisq.	d.f.
.51	.28	.73	14.32	5

Interpretation

•p1,p2: Prob. of ovule fertilizing, maturing to seed

- •Estimates : 0.28, 0.73
- •Why?
- •Species butterfly pollinated
- •Assumption:
 - •Pollen limiting situation
 - •Low p: low availability
- •Speculation:
 - •Butterfly inserts proboscis into flower: large clump of pollen
 - •Merely flutters wings while on flower : few pollen
 - •Testable hypothesis

Conclusion

- •A simple model could describe a biological phenomenon in many species
- •Relaxing assumptions increases applicability of a model
- •Model sometimes suggests directions for new observations •In case of A.l. empirical verification of λ_4 , λ_8 necessary •In case of C.p. verification of λ
- λ =0.51:Both situations equally frequent
- Home work: Collect data on seed count for a species of your choice Try fitting one of the models described