Modeling Diffusion of Eco-friendly Innovations

- •Innovation:
 - •New product Xerox machine, solar cooker
 - •New process power co-generation, wind mill
 - •New idea franchising IT education, e- tutoring
- Diffusion
 - •By law cost accounting
 - •By advertising investment in plantation
 - By word of mouth Gutkha
- Some important innovations
 - Hybrid varieties
 - Small pox Vaccination

Solar cooker

- •Universe all users in Pune
- •Frame list of customers
- •Stratification different parts of the city

Kothrud, old Pune, PCMC

- •Questions?
 - •Use for what?
 - Is it good?
 - Process of adoption
 - •Who told you?
 - •Why adopt?

- Draw backs weight, paint, wheels
- •No users from low income group. Why?
 - •Lack of access to sun
- Only high income group users
 - No subsidy needed
- •Which attribute to advertise?
 - Preserves nutritional value
 - Convenient, saves LPG
 - Ecologically good
 - Right gift for newly weds
- •Other similar innovations —Solar heaters, lamps
 - •Are they becoming popular?
 - •Any bottle necks?
 - Deserves study

DOMESTIC BIOGAS PLANT

- Clean fuel convenience of housewife
- Effluent as fertilizer
- Kitchen waste disposal efficient, safe

- Mail questionnaire survey of users
 - mainly farmers near Pune
- •Objectives : estimate saving in traditional fuels
 - Identify problems in diffusion

Survey

- 600 biogas plants constructed during 1975-1985
 By RAIN
- Questionnaire filled twice
 - Before and after erecting plant
- •Respondents:
 - •200 before, 230 after, 91 common

Energy saved per family per year by adoption of biogas

Source (1)	# families (2)	Reduction in use (3)	Calculation (energy saving) (4)=(3) X 12 X CF	Energy saved (kcal) / family/ year (1000Kcal) (5)	Total energy saved / year (1000Kcal) (6)	
Dung cakes(kg)	34	219	219 X12 X230	604.44	20,551	
Firewood (collected) (kg)	83	138	138 X 12 X 814	1347.98	1,11,883	
Kerosene (lt) (cooking)	83	3.1	3.1 X 12 X 4561	169.67	14,083	
Kerosene (lt) Illumination	77	3.3	3.3 X 12 X 4561	180.62	13,907	
Total					1,60,424	

- energy saving \equiv 2166 kg firewood or 387 lt kerosene /year
- •With this order of saving idea did not spread enough. Why?

Problems in diffusion

- Average size of plant :
 - 4 cubic meter
 - •Raw material needed in large amounts
 - •Can work with full efficiency if family size is 25
- •With family size 25 plant can produce about 2071 cubic meter of biogas
 - Energy produced- 5.86 X 10⁶ kcal /family/year
 - Current saving 160424000/91 = 17,62,901 kcal/family /year

Just 30% of the capacity!

Cross bred goat adoption

- •Cows Manibhai Desai BAIF
- Goats Srikant Sabnis RAIN, Narayangaon
- •Goats next only to dogs (in being close to humans)
 - •Main source of milk in Spain, Greece
 - •Saanen males from Israel (1973)
 - •Cross with local females
 - Guaranteed fertilization

Mail questionnaire survey

- Who adopts
 - poor farmers, destitute women, rarely 'big farmers'
- •Why adopt?
 - -higher milk yield
 - Longer lactation period
 - -Fetches higher price for baby goats
- •How did you know?
 - neighbors, relatives
 - word of mouth

Why adopt?

Milk yield & Period of Lactation in Indigenous and Cross bred goats

Lactation	Yield per day (litres) /goat							
Period	Indigenous				Cross – bred			
(months)	< 0.25	0.25-0.5	0.5-0.75	Up to 1	0-1	1-2	>2	
1-3	7	11	3	6	1	0	2	
4-6	10	64	12	38	9	11	3	
>6	1	4	0	12	11	32	15	

Selling price of goats(mid eighties)

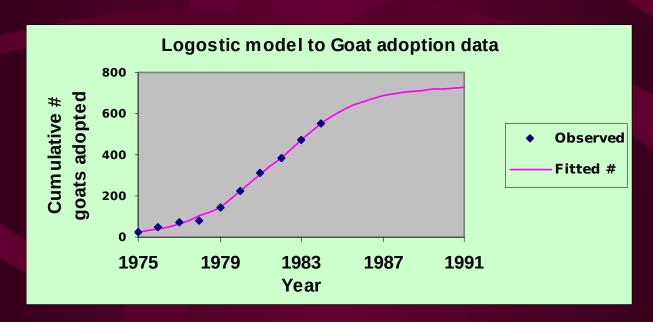
Price	Age(months)			Age(years)			
(Rs.)	Males			Females			
	1-3	4-6	>7	1	2	>3	
≤ 300	25	21	2	7	1	1	
300-600	1	3	8	7	2	2	
> 600	2	2	6	2	14	13	

Model for adoption

$$dN_t / dt = b N_t (K - N_t)$$

N_t: cumulative # adopters, K: Saturation level

$$N_t = K/(1 + \exp(-(a + rt)))$$
 r: growth rate, a constant


Other models : external influence

$$dN_t / dt = b_t (K - N_t)$$

mixed influence $dN_t / dt = (a + b N_t) (K - N_t)$

frequently used in marketing research

- •Vijay Mahajan & R.A. Patterson (1985- Sage)
 - Models for Innovation Diffusion
 - •Use any 'distribution function'- P(X<a) e.g. normal, Weibull etc.
 - •In the present case
 - Logistic model gave good fit

Surrounding villages

$$dN_{2t} / dt = (b_1 N_{1t} + b_2 N_{2t}) (K_2 - N_{2t})$$

 K_2 :Saturation level for surrounding villages Est(K_2) =6%, why so low?

Distance to service center- too much make service available locally males can be bought, raised and used Done by groups all over the country