Methods of abundance estimation

Why count? •Concern about conservation •Lion / tiger

•Assessment of resource base •Timber/ NTFP

•Assessment of threat to humans •Blackbuck count- farmers •Elephant count-villagers

Estimating population and its growth
Estimate age – sex composition
Compare population with carrying capacity

Standard methods Capture- recapture Nearest neighbor

•Line transect

•Non- standard methods

- •Waterhole census
- •Dung pile count
- •Bird count based on calls
- Pugmarks method

Estimation of Tiger Population using Pugmarks

 Pugmark - a single tiger paw print as a tracing / photograph taken from fixed height

•Pugmark Track Set – a series of paw prints from the same individual

Traditional method

- •Locate pugmarks
- •Trace them onto paper
- •Record time and place
- •Visual comparison
- •Eliminate repeats
- •What is left is the count

- Criticism
 - •No validation
 - •No oscillation in count
 - •Very low count of cubs
 - •Subjective
 - •Identifiability questionable

How to improve? Quantify shape and size

• Pad

- 1. Area
- 2. Major axis
- 3. Minor axis
- Pug

٠

- 4. Length
- 5. Width

- Distance
 - 6. Toe 1 centre to Toe 2 centre
 - 7. Toe 2 centre to Toe 3 centre
 - 8. Toe 3 centre to Toe 4 centre
 - 9. Pad centre to Toe 1 centre
 - 10. Pad centre to Toe 2 centre
 - 11. Pad centre to Toe 3 centre
 - 12. Pad centre to Toe 4 centre

🚬 SigmaScan Pro - frd 1 data								_ 8			
<u>File E</u> dit <u>V</u> iew <u>I</u> mage M <u>a</u> cro W <u>o</u> rksheet <u>M</u> easur	ements Mo <u>d</u> e	<u>T</u> ools <u>W</u> ind	low <u>H</u> elp								
□☞■ * ▫°:::::::::::::::::::::::::::::::::::	3	7 1 1 1		z 🗠 🖵 🗛	1						
				உயகுட	1						
Pick parameters - of distances between centres of pad & toes using											
the previously measured centre X/Y's											
the 🚓	previou	sly me	asured	centre	$\mathbf{X} \mathbf{X} \mathbf{Y} \mathbf{S}$						
and the first second	<u> </u>	Δ.	P	C	D	E	F				
		A Area	B CMBin x	C CMBin y	D Maj Len	E Min Len	Angle	G ∸ Perim			
\sim	14			· · · · · · · · ·							
	15	78	121	244	82.637764	0	0	181.681			
	16										
	17	04	100	242	107.04005			200 705			
	18 19	94	133	212	107.04205	0	U	232.735-			
$1 \wedge \times \times$	20		8			2					
	21	129	160	195	128.00391	0	4.01E-015	259.656			
	22										
	23	00	102	040	107.04505		1 005 045	207.504			
	24 25	86	193	216	107.61505	U	1.03E-015	227.504			
	25		2			2					
	27	64	95	197	67.416615	0	2.39E-015	148.710			
	28										
	29							100.000			
	30 31	55	134	148	64.350602	U	1.86E-015	139.823			
	31		2			2	2				
	33	66	193	152	77.935871	0	8.39E-017	168.450			
	34										
	🔹 🕨 Data 🔨 Star	atistics /			1						

A.P.Gore

For Help, press F1

🏽 Start 🛛 🖄 👪 🔄 🐨 🗙 🗢 🔯 🖻 🕈 🤤 🥔 🗳 🍣 🍟 🗳 🍐 🦅 📘 🚬 SigmaScan P...

S.A.Paranjpe

Na 10:31

How to use measurements?

Establish objective criteria

Factors possibly affecting a pugmark print

- Substrate
- •Operator
- •Sex of animal
- •Locality
- Inter-individual variation
- Intra-individual variation

Experiments

•Substrate- same animal different substrates : Coimbatore

- •3 substrates- fine soil, wet mud, sand
- •Two animals only
- ANOVA for each variable
- Most variables show no effect

•Operators- same trail different operators: Melghat

- •Single trail
- •6 operators
- •3 prints each
- ANOVA for each variable
- Most varibles show no effect

•Sex- Pune, Coimbatore

•5 animals- 2 males, 3 females

•Several prints on each (total 100)

Logistic regression : P= prob(a given animal is a female)

•3 measurements significant

•Pad center- Toe 1 center distance(X₁)

•Pad center- Toe 2 center distance (X₂)

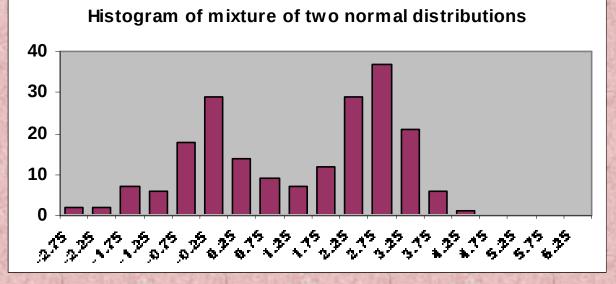
•Toe 1 center- Toe 4 center distance (X₃)

•Ln(p/(1-p)) = $56.06 - 2.76X_1 - 3.56X_2 - 1.1X_3$

A.P.Gore

S.A.Paranjpe

Sex identification using logistic regression


Decision	Know	Total	
	Μ	F	
M(p<0.25)	23	7	30
F(p>0.75)	1	59	60
Ambiguous	6	1	7
Total	30	67	97

Sex discrimination using Bhattacharya method

- Mixture of normal distributions : to be separated
- •For a single normal distribution
- Y = ln (f(x+ Δ)/ f(x)) = [2 Δ (x+ Δ /2) 2 Δ μ] / 2 σ^2
- Slope of a line = Δ/σ^2 intercept = $\Delta \mu / \sigma^2$
- Mixture of distributions gives multiple falling lines
- •Plot y Vs x+ $\Delta/2$. Gives sequence of straight lines with negative slope- each line one component

STATSPUNE

Bhattacharya plot

A.P.Gore

S.A.Paranjpe

13

Bhattacharya method:
Male – squarish print
Female – rectangular
(Length – breadth) (of the covering frame)
Near 0 – male , > 0 female
Histogram of Breadth bimodal
Separate components by Bhattacharya method
Component with smaller mean breadth- females
With larger mean breadth – males

Results:

 $\mu_1 = 10.26$, $\mu_2 = 12.75$

estimated proportion of females= $40/75 \approx 0.53$

Simplified rule adopted by foresters: (L-B) >2.5cm - female

A.P.Gore

•Locality - field data from project tiger: Melghat and Kanha

•90 prints each

Half data used for calibration

Discriminant analysis

Half data used for validation

Initially 10 variables used

Variables tested for redundancy

•Two variables adequate
•Toe1C- Toe2C distance
•Toe1C- Toe3C distance

Classification of 90 tiger pugmark tracings from two populations

True	Classification Using					
Population	10 var.	iables	2 variables			
	I	Π	Ι	Π		
Ι	44	1	40	5		
II	8	37	4	41		

Does this help in estimating Tiger number?

•No.

- •All analysis so far macro level only
- Key question How many distinct tigers in a set of n pugmark tracings?
- •An intuitive approach:
 - •Compare known intra individual variation with observed inter pugmark variation.
 - How to assess intra individual variation?
 - •Analyze multiple tracings from the same trail.

An intuitive algorithm

- • X_1 , X_2 ,..., X_n : n vectors (n pugmarks) of order p
- •<u>X</u>_i Follows normal distribution
 with mean vector <u>μ</u>_i
 •Var- cov matrix_Σ (assumed to be known)
- •Number of distinct tigers k (unknown)
- •Step 1 H_0 : k = 1 (only one tiger)
- • $T_n = sum[(X_i Xbar)' \Sigma^{-1} (X_i Xbar)]$

•Reject H₀ if T large .Then try k=2

18

An intuitive algorithm(cont.)

- $H_0: k=2$
- Omit one vector \underline{X}_i which causes max reduction in T_n
- Check if $T_{n-1}(i) = sum[(X_i Xbar)' \Sigma^{-1} (X_i Xbar)]$ is small
- If yes, two tigers. Otherwise continue omitting.
- Process terminates when homogeneous subgroups identified
- Each subgroup one tiger
- confidence statement?
- •Not available in standard literature.

•Recent algorithm developed by Chatterjee and Samanta(1999) A.P.Gore •Not tested 19 S.A.Paranjpe

Foresters' current approach Discriminant Analysis

- Establish the parameters fit for consideration to facilitate individual identity
- Multiple Group Discriminant Analysis done using SPSS Systat (unitwise)
- Canonical Scores Plot from data generated by tracings/ digital photographs in SPSS Sigma ScanPro
- Number of distinct pugmarks ascertained unitwise
- If all tracks from each foot are grouped into 2 groups (eg. A & B) : then these sets are from 2 different tigers
- Equal mixing (overlap) may indicate a single animal
- 75% to 80% correct grouping is acceptable

Camera trap method

Major criticism about pugmark method

Identifiability

- Alternative suggested : Camera trap
- Tiger walks on footpaths

Two cameras placed on two sides of road opposite to each other

- Activated as a laser beam is cut by any object
- Tiger picture from both sides

A.P.Gore

- Claim : stripes on the back of tiger carry signature
- Treat photograph as capturing and marking a tiger
- •Use capture-recapture model to estimate number

Objections:
Identifiability
Cost effetiveness
Feasibility
Proper sampling of forest

•Controversy: which method is better •Camera trap or pugmark?

Comparison Camera trap Vs Pugmark

•**Identity** Based on picture Ocular comparison

based on pugmark numerical comparison

Intra individual variability

Not measurable

measurable

•Cost Expensive Equipment intensive

•Suitability

Not suited for low density Unsuitable for rugged terrain inexpensive labor intensive

low density –no limitation unsuitable for swamps

A.P.Gore

S.A.Paranjpe

Comparison Camera trap Vs Pugmark(cont.)

Sampling

Will see only a small fraction

virtually every individual seen. Can build a directory. Individual life history can b accumulated. no problem

Territoriality is a problem

Confidence interval

Can be given

cannot be given