Study of crop weather relationship

Macro level study

•Ramdas data

- •5 crops rice , wheat, sorghum, cotton, sugar cane
- •20 stations all over the country
- •Two varieties at each station one local, one national
- •25 years –1946- 1972

•Records

- •From sowing to harvest
 - •Dates of important events e.g. sowing,
 - end of germination, end of growth etc.
 - •Measures of crop development e.g. % germination Height of plant, yield etc.
 - •Corresponding weather data

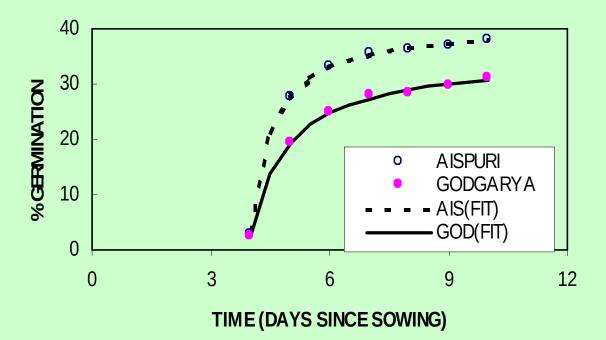
Objectives

- •Early prediction of yield
- •Weather component of yield variability

•How to begin?

Development phases that can be modeled

- Seed germination
- Plant growth
- Yield


Modeling of seed germination

- Data: daily % germination
- •Model : Hyperbolic shifted origin •Initial stage not observable(first 3 /4 days) •Total period 10-15 days

$$Y = V(x-x_0) / (K+(x - x_0))$$

Where; x – days since sowing x₀ - shift Y - % germination up to x days V- max germination K – half saturation constant (time when % germination if V/2)

JALGAON 1951

Parameter	Ais	God
V	41.04	35.07
K	.5	.86
X ₀	3.96	3.94

Meta model

•V,K regressed on weather •1 week pre sowing, 1 week after sowing

•Aispuri	\mathbb{R}^2	error d.f.		
V= - 101.84 + 0.40 RHH2	81%	4		
K= 0.85 -0.0005 MWV	26%	4		
•Godgarya V= - 110.5 + 0.42 RHH2	80%	8		
K= 3.14 -0.0024 MWV	34%	8		
V- environment sensitive, K-genetic?				
•Use : anticipate failure of germination				

•Action – re-sowing

Modeling plant growth

- •Data weekly / fortnightly height records of plants
- Model sigmoidal logistic
 K, r parameters K- max height, r growth rate
- •Meta model
 - •Relate K, r to weather
- Literature degree days play a measure role in growth phase
 Degree days sum of excess over 15° C in each day
 Temp below 15° C not favorable for growth
- •Use early prediction of K prediction of straw yield

Results of meta model

•Degree days in first 10 weeks after sowing are considered

•Aispuri	R ²	error d.f.
K = - 77.0 + 0.45W1 +0.99 W5 +1.28 W7 –0.72W9	47%	15
r = -0.01 + 0.0001 W1 - 0.0002 (W2-W4) + 0.0005 W7	57%	15
•Godgarya	R ²	error d.f.
K = - 225.0 + 0.94W1 +1.31 W5 +1.48 W7 –0.57W9	48%	15
	very low	15

Only one weather variable(degree days) used is inadequate. Additional variables may improve R².

Predicting yield using biometrical and weather variables

•Biometrical variables:

- •Growth indicators at earlier phases of crop development e.g. germination %, max plant height, max # shoot/ plant etc.
- •Contain information about weather up to that phase
- not adequate to explain yield variability by themselves
- •Weather after completion of plant growth needs to be considered
- Weather in 2 weeks after completion of plant growth is considered
 2 months before harvest
 - •Early enough

Regression model for Sorghum yield (Grain- Solapur)

Predictor variables Variety 1(M-35-1) Variety 2 (ND15)

Max height Max shoots/sample **DB1W2 WB1W1 WB1W2 ST1W1 RH1W2** $R^2 = 85\%$ **d.f.(error)= 9**

Max ears/sample Max shoots/sample DB1W1 WB1W1 ST1W2 RH1W2 --85%

10

Regression model for Paddy yield (Grain- Karjat)

Predictor variables

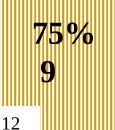
Variety 1(K-42)

Variety 2 (no name)

Max height

Max height Max no of ears DB1W2 WB1W2 MaxTW2 MinTW2 VP1W2 RH1W2

R² = 87% d.f.(error)=11 --DB1W1, DB1W2 WB1W1, WB1W2 MaxTW1 MinTW1, MinTW2 --RH1W1


78% 10

Regression model for Paddy yield (Straw) Predictor variables Variety 1(K-42) Variety 2 (no name)

Max # shoots Max # of ears DB1W1, DB1W2 WB1W2 MaxTW2 ----

VP1W1 RH1W1

R² =75% d.f.(error) = 11 --DB1W2 WB1W1, WB1W2 MaxTW1 MinTW2 VP1W1 RH1W1, RH1W2 **STATSPUNE**

Weather component of yield variability

•Factors affecting yield

- •Variety chosen
- •Locality (soil,
- climate)
- •Weather of that year

•Agronomic practices Ramdas data: agronomic practices standardized across stations. Varieties fixed for a station over years, but change between stations.

Varieties treated as a random effect.

Variation in yield from year to year for a given station and variety – weather effect

Nested model – Station(variety (year(error))) Separating error from year? Multiple plots in the same year.

Variance components (sorghum grain yield)

Source	d.f.	% variance
Station	4	43.0
Variety	5	0.0
Year (weather)	108	39.0
Error	584	18.0

Variance Components (Paddy Grain Yield-Karjat)

Source	d.f.	% of Total
variety	1	3.21
year	32	64.56
(weather)		
Error	374	32.23
Total	407	