Fracture Mechanics - Workshop Solutions

1. Given: $\mathrm{W}=50 \mathrm{~mm} ., \mathrm{B}=25 \mathrm{~mm}, \mathrm{a}_{\mathrm{o}}=25 \mathrm{~mm}, \mathrm{P}=25 \mathrm{kN}$
a) $\mathrm{a} / \mathrm{W}=25 / 50=0.5$, then $\mathrm{f}=9.66$
from compact specimen K calibration table in Lecture 2.1
$\mathrm{K}=\mathrm{Pf} / \mathrm{B} \sqrt{ } \mathrm{W}=(.025 \mathrm{MN})(9.66) /(.025 \mathrm{~m})(\sqrt{ } .05 \mathrm{~m})=43.2 \mathrm{MPa}^{\mathrm{m}}$

Let $\Delta \mathrm{a}=5 \mathrm{~mm}$ then $\mathrm{a}=30, \mathrm{a} / \mathrm{W}=0.6, \mathrm{f}=13.65$,
$K=(5)(13.65) /(1)(\sqrt{ } 2)=61.0$
b) Similar calibrations $\mathrm{a}=250, \mathrm{~W}=500, \mathrm{P}=80, \mathrm{~K}=43.7$
$\mathrm{a}=255, \mathrm{a} / \mathrm{W}=.51, \mathrm{f}=9.96, \mathrm{~K}=45.1$
c) CCT use 2.1 from Tada Handbook (in Section 2)
$\mathrm{a}=25, \mathrm{~b}(\mathrm{~W})=5.0=2 \mathrm{~W} / 2, \mathrm{a} / \mathrm{b}=0.2, \mathrm{~F}=1.0246 ;$
$\sigma=1.0 \mathrm{MN} /(.025 x .25) \mathrm{m}^{2}=160 \mathrm{MPa}$
$K=\sigma \sqrt{\pi a} F$
$\mathrm{K}=(160) \sqrt{ }(.025 \pi)(1.0246)=45.9 \mathrm{MPa} \sqrt{ } \mathrm{m}$
$\Delta \mathrm{a}=5, \mathrm{a}=30, \mathrm{a} / \mathrm{b}=0.24, \mathrm{~F}=1.032, \mathrm{~K}=50.7$

Alternate form: for $\mathrm{a} / \mathrm{W}=0.2, \mathrm{f}=0.406, \mathrm{P}=1000, \mathrm{~K}=(1.0)(.406) / .025 \mathrm{~V} .125=45.9$
2. K same form as 1 c . from Tada $2.10, \sigma=200 \mathrm{MPa}, \mathrm{b}=100 \mathrm{~mm}$

$$
K=\sigma \sqrt{\pi a} F
$$

$$
\mathrm{F}=\text { graphical value } /(1-\mathrm{a} / \mathrm{b})^{3 / 2} /(1-\mathrm{a} / \mathrm{b})^{3 / 2}
$$

Example: $\quad \mathrm{a}=2.5, \mathrm{a} / \mathrm{b}=.025$, graph $=1.1, \mathrm{~F}=1.1 /(1-2.5 / 100)^{3 / 2}=1.14$

$$
K=200 \sqrt{ }(.0025 \pi) 1.14=20.2
$$

a	a / b	graphical value	$(1-\mathrm{a} / \mathrm{b})^{3 / 2}$	F	K
2.5	.025	1.1	.963	1.14	20.2
12.5	.125	1.0	.818	1.23	48.7
37.5	.375	.98	.494	1.98	135.9

3. $r_{y}=(1 / 2 \pi)\left(K / \sigma_{y s}\right)^{2}$
$\mathrm{K}=43.2 \mathrm{MPa} \sqrt{ } \mathrm{m}, \sigma_{\mathrm{ys}}=240 \mathrm{MPa}, \mathrm{r}_{\mathrm{y}}=(1 / 2 \pi)(43.2 / 240)^{2}=.0052 \mathrm{~m}=5.2 \mathrm{~mm}$
$\mathrm{W}-\mathrm{a}=25 \mathrm{~mm}, \mathrm{r}_{\mathrm{y}} /(\mathrm{W}-\mathrm{a})=0.208=21 \%$

$$
\sigma_{\mathrm{ys}}=1200, \mathrm{r}_{\mathrm{y}}=0 . .21,0.8 \%
$$

after $\Delta \mathrm{a}=0.2, \mathrm{~K}=61, \mathrm{r}_{\mathrm{y}}=(1 / 2 \pi)(61 / 240)^{2}=0.0103 \mathrm{~m}=10.3 \mathrm{~mm}$
$\sigma_{\mathrm{ys}}=240 \mathrm{MPa}, \mathrm{W}-\mathrm{a}=20, \mathrm{r}_{\mathrm{y}} /(\mathrm{W}-\mathrm{a})=0.515$ or 52%
$\sigma_{\mathrm{ys}}=1200, \mathrm{r}_{\mathrm{y}}=0.41 \mathrm{~mm}, 2.0 \%$
4. $\mathrm{K}_{1}=200(\Delta \mathrm{a})^{0.2}, \mathrm{~K}_{2}=100(\Delta \mathrm{a})^{0.05}$

$\Delta \mathrm{a}$	K_{1}	$\mathrm{~K}_{2}$
.01	$79.6 \mathrm{ksi} \sqrt{ } \mathrm{in}$	79.4
.05	109.9	86.1
.1	126.2	89.1
.5	174	96.6

See plots for complete curves

Workshop Prob 4 K-R Curve

5. Approximate reading of $\mathrm{P}-\mathrm{v}$ graph

$P_{Q}=31$ kips, $P_{\max }=33$
a/W $=2.1 / 4=0.525, f=10.45$
$\mathrm{K}_{\mathrm{Q}}=(31)(10.45) / 2 \sqrt{ } 4=81 \mathrm{ksi} \sqrt{ } \mathrm{in}$,

Validity: $\mathrm{P}_{\max } / \mathrm{P}_{\mathrm{Q}}=33 / 31=1.065<1.1$, OK
$2.5\left(\mathrm{~K}_{\mathrm{Q}} / \sigma_{\mathrm{ys}}\right)^{2}=2.5(81 / 100)^{2}=1.64<2(\mathrm{~B})$ or 2.1 (a) OK
$0.45<0.525<0.55, \mathrm{a}_{\mathrm{o}} / \mathrm{W}$ OK
$\mathrm{K}_{\mathrm{Q}}=\mathrm{K}_{\mathrm{Ic}}=81 \mathrm{ksi} \sqrt{\mathrm{in}}$
$R_{s c}=\left[2 P_{\max }(2 W+a)\right] /\left[B(W-a)^{2} \sigma_{y s}\right]$
$=[2(33 \mathrm{kips})(2 x 4+2.1) \mathrm{in}] /\left[(2.0 \mathrm{in})(1.9 \mathrm{in})^{2}(100 \mathrm{ksi})\right]=0.92$
(in the linear elastic range)
$\mathrm{K}_{\text {Ic }}$ SI:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{Q}}=31 \mathrm{kipsx}(4.448)=138 \mathrm{kN}, \mathrm{P}_{\max }=148 \mathrm{kN} \\
& \mathrm{a} / \mathrm{W}=52.5 / 100=0.525, \mathrm{f}=10.45 \\
& \mathrm{~K}_{\mathrm{Q}}=(0.138)(10.45) / .05 \sqrt{ } .1=91.2 \mathrm{MPa} \sqrt{\mathrm{~m}} \\
& \text { Validity: } \mathrm{P}_{\max } / \mathrm{P}_{\mathrm{Q}}=148 / 138=1.07<1.1, \mathrm{OK} \\
& 2.5\left(\mathrm{~K}_{\mathrm{Q}} / \sigma_{\mathrm{ys}}\right)^{2}=2.5(91.2 / 700)^{2}=0.042 \mathrm{~m}=42.4 \mathrm{~mm}<50(\mathrm{~B}) \text { or } 52.2(\mathrm{a}) \mathrm{OK} \\
& 0.45<0.525<0.55, \mathrm{a}_{\mathrm{o}} / \mathrm{W} \quad \mathrm{OK} \\
& \mathrm{~K}_{\mathrm{Q}}=\mathrm{K}_{\mathrm{Ic}}=91.2 \mathrm{MPa} \sqrt{\mathrm{~m}} \\
& \mathrm{R}_{\mathrm{sc}}=\left[2 \mathrm{P}_{\max }(2 \mathrm{~W}+\mathrm{a})\right] /\left[\mathrm{B}(\mathrm{~W}-\mathrm{a})^{2} \sigma_{\mathrm{ys}}\right] \\
& =[2(.148)(2 \mathrm{x} .1+.052) \mathrm{in}] /\left[(.05)(.0475)^{2}(700)\right]=0.94 \\
& \quad(\text { in the linear elastic range })
\end{aligned}
$$

6. Take points 5 and 6 as example

$$
\begin{aligned}
& \mathrm{da} / \mathrm{dN}=(0.79-0.73) /(125,000-95,000)=0.060 / 30,000=2.0 \times 10^{-6} \\
& \mathrm{a}_{\mathrm{ave}}=(0.73+0.79) / 2=0.76, \mathrm{a} / \mathrm{W}=0.38, \mathrm{f}=6.91, \Delta \mathrm{P}=1000-100=900, \\
& \Delta \mathrm{~K}=(900)(6.91) /(0.25 \sqrt{ } 2)=17,600 \mathrm{psi} \sqrt{ } \mathrm{in}=17.6 \mathrm{ksi} \sqrt{ } \mathrm{in}
\end{aligned}
$$

$\mathrm{da} / \mathrm{dN}, \mathrm{in} / \mathrm{cyc}$	$\Delta \mathrm{K}, \mathrm{ksi} \sqrt{ } \mathrm{in}$
1.162×10^{-6}	14.5
1.351×10^{-6}	15.0
1.333×10^{-6}	1.5 .7
1.6×10^{-6}	16.5
2.0×10^{-6}	17.6
2.33×10^{-6}	19.1
$3.0 \times 10^{-6} \mathrm{e}$	21.4
4.4×10^{-6}	25.2
8.0×10^{-6}	30.0
16.0×10^{-6}	39.3
40×10^{-6}	61.3

Plot $\log \mathrm{da} / \mathrm{dN}$ vs $\Delta \mathrm{K}$ and fit equation result is, $\mathrm{da} / \mathrm{dN}=1.44 \times 10^{-9}(\Delta \mathrm{~K})^{2.5}$
(see attached plots)
7. $\Delta \mathrm{K}=5.0 \mathrm{ksi} \mathrm{in}, \mathrm{a}=0.6 \mathrm{in}, \mathrm{a} / \mathrm{W}=0.3, \mathrm{f}=5.62$
$\Delta \mathrm{K}=\Delta \mathrm{Pf} / \mathrm{B} \sqrt{ } \mathrm{W}=\Delta \mathrm{P}(5.62) /(0.25 \sqrt{ } 2)=5$,
$\Delta \mathrm{P}=0.315 \mathrm{kips}$
or P ranges from 100 to 415 lbs

8. $\mathrm{W}=2.0, \mathrm{~B}=1.0, \mathrm{a}_{\mathrm{o}}=1.0(\mathrm{all} \mathrm{in}) \mathrm{a} / \mathrm{W}=0.5,. \mathrm{E}=30,000 \mathrm{ksi}$
$\mathrm{BEv} / \mathrm{P}=36.98, \mathrm{f}=9.66$
$\mathrm{P}=(1.0)(30,000)(0.012) / 36.98=9.73 \mathrm{kips}$
$K_{o}=(9.73)(9.66) /(1 \sqrt{ } 2)=66.5$
$\mathrm{a}_{\mathrm{f}}=1.5, \mathrm{a} / \mathrm{W}=0.75, \mathrm{BEv} / \mathrm{P}=185.4, \mathrm{f}=28.86$,
$\mathrm{P}=(1.0)(30,000)(0.012) / 185.4=1.94 \mathrm{kips}$
$\mathrm{K}_{\mathrm{f}}=(1.94)(28.86) /(1 \sqrt{ } 2)=39.6 \mathrm{ksi} \sqrt{ } \mathrm{in}$

Workshop 4

1. $\mathrm{W}=0.05 \mathrm{~m}, \mathrm{~B}=0.025 \mathrm{~m}, \mathrm{a}_{\mathrm{o}}=0.04 \mathrm{~m} \mathrm{a} / \mathrm{W}=0.5, \mathrm{E}=210,000 \mathrm{MPa}$
$\mathrm{BEv} / \mathrm{P}=22.88, \mathrm{f}=7.28$

$$
\begin{aligned}
& \mathrm{P}=(0.025)(210,000)(0.00025) / 22.88=0.05736 \mathrm{MN}(57.4 \mathrm{kN}) \\
& \mathrm{K}_{\mathrm{o}}=(0.05736)(7.28) /(0.025 \sqrt{ } 0.05)=74.7 \mathrm{MPa} \sqrt{ } \mathrm{~m} \\
& \mathrm{a}_{\mathrm{f}}=40, \mathrm{a} / \mathrm{W}=0.80, \mathrm{BEv} / \mathrm{P}=305.5, \mathrm{f}=41.2, \\
& \mathrm{P}=(0.025)(210,000)(0.00025) / 305.5=0.0043 \mathrm{MN} \\
& K_{f}=(0.0043)(41.2) /(0.025 \sqrt{ } 0.05)=31.7 \mathrm{MPa} \sqrt{ } \mathrm{~m}
\end{aligned}
$$

2. $\sigma=\mathrm{P} / \mathrm{A}=1.0 /(0.025 x 0.1)=400 \mathrm{MPa}, \mathrm{K}=\sigma \sqrt{ }(\pi \mathrm{a}) \mathrm{F}$,
a) for $91.2 \mathrm{MPa} \sqrt{ } \mathrm{m}$ from Workshop 2 , cannot solve $\mathrm{a}_{\text {cr }}$ directly make a table

a, mm	a / b	F	$\mathrm{K}, \mathrm{MPa} \sqrt{ } \mathrm{m}$	comment
Try 20	0.2	1.37	137.4	too high
10	0.1	1.195	84.7	too low
11	0.11	1.21	90.0	close
11.2	0.112	1.215	91.2	good

Then, $\mathrm{a}_{\mathrm{cr}}=11.2 \mathrm{~mm}$

Alternate form: $\mathrm{K}=91.2=\mathrm{Pf} / \mathrm{B} \sqrt{ } \mathrm{W}=1.0 \mathrm{f} / 0.025 \sqrt{ } .1$;

$$
\mathrm{f}=0.721, \mathrm{a} / \mathrm{W}=.1125, \mathrm{a}_{\mathrm{cr}}=11.25 \mathrm{~mm}
$$

b) For $=\sigma_{y s}=350$ and $\sigma=400$ the plate is already yielded. No defect allowed

$$
\sigma=\mathrm{P} / \mathrm{A}=1.0 /(1 \times 5)=50 \mathrm{ksi}, \mathrm{~K}=\sigma \sqrt{ }(\pi \mathrm{a}) \mathrm{F},
$$

a) for $\mathrm{K}_{\mathrm{Ic}}=81.0$ from Prob. 5, cannot solve a_{cr} directly make a table

a, in	a / b	F	$\mathrm{K}, \mathrm{ksi} \sqrt{ } \mathrm{in}$	comment
Try 1.0	0.2	1.37	121	too high
0.5	0.1	1.21	75.8	too low
0.55	0.11	1.22	80.2	close
0.56	0.112	1.22	80.9	good

Then, $\mathrm{a}_{\mathrm{cr}}=0.56$ in

Alternate form: $\mathrm{K}=81=\mathrm{Pf} / \mathrm{B} \sqrt{ } \mathrm{W}=250 \mathrm{f} / 1 \sqrt{ } 5 ; \mathrm{f}=0.724, \mathrm{a} / \mathrm{W}=.1135, \mathrm{a}_{\mathrm{cr}}=0.57 \mathrm{in}$
b) For $=\sigma_{y s}=50$ and $\sigma=50$ the plate is already yielded. No defect allowed
10. $\sigma=50 \mathrm{ksi}, \mathrm{K}=1.122 \sigma \sqrt{ }(\pi \mathrm{a})$
$\mathrm{K}_{\text {IEAC }}=40=1.122\left(50 \sqrt{ }(\pi \mathrm{a}), \mathrm{a}_{\mathrm{EAC}}=0.162 \mathrm{in}\right.$.
$\mathrm{K}_{\mathrm{Ic}}=100=1.122\left(50 \sqrt{ }(\pi \mathrm{a}), \mathrm{a}_{\mathrm{cr}}=1.011 \mathrm{in}\right.$.
11. da $/ \mathrm{dN}=1.44 \times 10^{-9} \Delta \mathrm{~K}^{2.5}$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{o}}=0.1, \mathrm{~K}_{\mathrm{Ic}}=100, \Delta \sigma=30, \sigma_{\max }=40 \\
& \mathrm{a}_{\mathrm{f}}=(1 / \pi)(100 / 1.122 \times 40)^{2}=1.58
\end{aligned}
$$

$\mathrm{da} / \mathrm{dN}=1.44 \times 10^{-9}[1.122 \times 30 \sqrt{ }(\pi \mathrm{a})]^{2.5}=3.96 \times 10^{-5} \mathrm{a}^{1.25}$

$$
N_{f}=\int_{0.1}^{1.58} \frac{d a}{3.96 \times 10^{-5} a^{1.25}}=\frac{1}{3.96 \times 10^{-5}}\left[\frac{a^{-0.25}}{(-0.25)}\right]_{0.1}^{1.58}
$$

$\mathrm{N}_{\mathrm{f}}=89,550$ cycles
12. Treat the pressure vessel wall as a CCT
$\mathrm{a}_{\mathrm{cr}}=(1 / \pi)(120 / 40)^{2}=2.86$ in
this is the through crack that will cause failure
a) Consistent shape, $\mathrm{a} / 2 \mathrm{c}=0.25, \mathrm{a}_{\mathrm{o}}=0.5,2 \mathrm{c}_{\mathrm{o}}=2.0$
$\mathrm{a}_{\mathrm{f}}=2.0,2 \mathrm{c}_{\mathrm{f}}=8.0, \mathrm{c}_{\mathrm{f}}=4.0>2.86$, break
b) Consistent growth, $\Delta \mathrm{a}=1.5, \Delta \mathrm{c}=1.5, \mathrm{c}_{\mathrm{o}}=1.0, \mathrm{c}_{\mathrm{f}}=2.5<2.86$, leak (however, close to break)
13. Example of first point (all J calculations using initial crack size)
$\mathrm{a}_{\mathrm{o}}=1.185, \mathrm{a}_{\mathrm{f}}=1.268, \Delta \mathrm{a}=0.083 \mathrm{in}$.
$\mathrm{a} / \mathrm{W}=0.5925, \mathrm{f}=13.25, \mathrm{P}_{\mathrm{f}}=9.50, \mathrm{~K}=(9.50)(13.26) /(1 \sqrt{ } 2)=89.0 \mathrm{ksi} \mathrm{Vin}$,
$\mathrm{J}_{\mathrm{el}}=\mathrm{K}^{2}\left(1-v^{2}\right) / \mathrm{E}=(89.1)^{2}(0.91) /(30,000)=0.24 \mathrm{kip}-\mathrm{in} / \mathrm{in}^{2}$
$\mathrm{J}_{\mathrm{pl}}=\eta($ area $) / \mathrm{Bb}=(2.213)(1020) /(1.0 \times 0.815)=2770 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{2}=2.77 \mathrm{kip}-\mathrm{in} / \mathrm{in}^{2}$
$\mathrm{b}=\mathrm{W}-\mathrm{a}=2.0-1.185=0.815, \eta=2+0.522(\mathrm{~b} / \mathrm{W})=2+0.522(0.815 / 2)=2.213$
$\mathrm{J}_{\text {tot }}=\mathrm{J}_{\mathrm{el}}+\mathrm{J}_{\mathrm{pl}}=0.240+2.77=3.01$
(All J values in.-lb/in ${ }^{2}$)

J, in-lb/in2	$\Delta \mathrm{a}$, in
3010	.083
1160	.008
2380	.042
2900	.057
1520	.020
1960	.031
2640	.055

See attached plots to do the $\mathrm{J}_{\text {Ic }}$ construction, $\sigma_{\mathrm{Y}}=(70,000+90,000) / 2=80,000 \mathrm{psi}$

Workshop 6 - J versus ${ }^{2}$ a

Workshop 6 - J versus ${ }^{2}$ a with Construction
exclude points 1 and 2,
fit points 3 to 7 with $\ln (J)=\ln \left(\mathrm{C}_{1}\right)+\mathrm{C}_{2} \ln (\Delta \mathrm{a})$

$$
\text { result } J=12,597(\Delta a)^{0.537}
$$

solve with $\mathrm{J}=2 \times 80,000(\Delta \mathrm{a}-0.008) \quad\left(\mathrm{J}_{\mathrm{Q}}\right.$ calculation line $)$

Need table to iterate

$\Delta \mathrm{a}$	$\mathrm{J}_{\text {fit }}$	$\mathrm{J}_{\text {line }}$	comment
.016	1367	1280	Too low
.017	1413	1440	Too high
.0168	1403	1408	close
.01675	1401	1400	correct

$\mathrm{J}_{\mathrm{Q}}=1400 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{2}$

Validity
$\mathrm{J}_{\max }=\mathrm{b}_{\min } \sigma_{\mathrm{Y}} / 15=(0.720)(80,000) / 15=3840$; all points okay
$25\left(\mathrm{~J}_{\mathrm{Q}}\right) / \sigma_{\mathrm{Y}}=25(1400) /(80,000)=0.44 \mathrm{in}<$ all B, b

So $\mathrm{J}_{\mathrm{Q}}=\mathrm{J}_{\mathrm{Ic}}=1400 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{2}$
14. $\mathrm{P}_{\max }=12.0$, from construction, $\mathrm{v}_{\mathrm{pl}}=0.0085$ in, $\mathrm{f}=9.66$
$K=(12)(9.66) /(1 \sqrt{ } 2)=82.0$
$\delta_{\mathrm{el}}=\mathrm{K}^{2}\left(1-v^{2}\right) /\left(2 \sigma_{\mathrm{ys}} \mathrm{E}\right)=(82)^{2}(.91) /[(2)(30,000)(60)]=0.0017 \mathrm{in}$
$\delta_{p l}=r_{p}\left(W-a_{o}\right) v_{p l} /\left[Z+a_{o}+r_{p}\left(W-a_{o}\right)\right]$
load line $\mathrm{v}, \mathrm{Z}=0 ; \mathrm{CT}, \mathrm{r}_{\mathrm{p}}=0.46, \mathrm{a}_{\mathrm{o}}=1.0$

$$
\delta_{\mathrm{pl}}=(0.0085)(0.46)(1.0) /[1+0.46(1.0)]=0.00268
$$

$$
\delta_{\mathrm{tot}}=\delta_{\mathrm{el}}+\delta_{\mathrm{pl}}=0.0017+0.00268=0.00438 \mathrm{in}
$$

15. $\left.\mathrm{K}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}}\left[\left(8 / \pi^{2}\right)\right) \ln \left\{\sec \left(\pi \mathrm{S}_{\mathrm{R}} / 2\right)\right\}\right]^{-1 / 2}$
when $S_{R}=0.9, K_{R}$, from above $=0.734$ is the calibration point
a) $\sigma_{\mathrm{ys}}=150, \sigma=135, \mathrm{~K}=\sigma \sqrt{ } \pi \mathrm{a}=135 \sqrt{ }(0.025 \pi)=37.8, \mathrm{~K}_{\mathrm{Ic}}=50$
$\mathrm{K}_{\mathrm{R}}=\mathrm{K} / \mathrm{K}_{\mathrm{Ic}}=37.8 / 50=0.757>0.734$
so this point lies outside of the safe area, Unsafe
b) $\sigma_{\mathrm{ys}}=100, \sigma=90, \mathrm{~K}=\sigma \sqrt{ } \tau \mathrm{a}=90 \sqrt{ }(0.025 \pi)=25.2, \mathrm{~K}_{\mathrm{Ic}}=100$
$\mathrm{K}_{\mathrm{R}}=\mathrm{K} / \mathrm{K}_{\mathrm{Ic}}=25.2 / 100=0.252<0.734$
so this point lies inside of the safe area, Safe
16. $\sigma_{\mathrm{m}}=30, \mathrm{Q}=30, \mathrm{k}_{\mathrm{t}}=3$ (stress concentration factor for hole in a plate)

$$
\sigma / \sigma_{\mathrm{o}}=\varepsilon / \varepsilon_{\mathrm{o}}=\left[\mathrm{k}_{\mathrm{t}}\left(\sigma_{\mathrm{m}}+\sigma_{\mathrm{b}}\right)+\mathrm{Q}\right]=[(3)(30)+30] / 60=2.0
$$

From CTOD design curve, $\Phi=1.75=\delta_{\text {cr }} /\left(2 \pi \varepsilon_{o}\right.$ a)

From prob. $14, \delta_{\text {cr }}=0.00493$

So, $\mathrm{a}_{\text {cr }}=\delta_{\text {cr }} /\left(2 \pi \varepsilon_{\mathrm{o}} \Phi\right)=(0.00438) /[(2 \pi)(60 / 30,000)(1.75)]=0.199$ in
17. Look at points of
i) final failure with $\mathrm{K}_{\mathrm{Ic}}=120 \mathrm{ksi} \sqrt{ }$ in
ii) da/dN initiation from $\Delta \mathrm{K}_{\mathrm{TH}}$,
iii) Life based on da/dN vs $\Delta \mathrm{K}$
i) $\mathrm{K}_{\mathrm{Ic}}=120, \mathrm{~K}=\sigma \sqrt{ }(\pi \mathrm{a}) \mathrm{F}$,
$\mathrm{a}=1.75, \mathrm{a} / \mathrm{b}=0.35, \mathrm{~F}=1.87$
$\Delta \sigma=0$ to $75 /(1 \times 5)=15 \mathrm{ksi}$
at $\sigma=15 \mathrm{ksi}, \mathrm{K}=15 \sqrt{ }(1.75 \pi)(1.87)=65.7$ to low
at $\mathrm{K}=120, \sigma=27.4$, and $\mathrm{P}=137$ kips; looks like a high load
ii) Initiation flaw, $\mathrm{a}=0.02,2 \mathrm{c}=0.1, \mathrm{a} / 2 \mathrm{c}=0.2, \mathrm{Q}=1.32$,
$K=1.122 \Delta \sigma \sqrt{ }(\pi \mathrm{a} / \mathrm{Q})$
If $\Delta \sigma=15, \Delta \mathrm{~K}=1.122(15) \sqrt{ }(0.02 \pi /(1.32)=3.7$ too low,
If $\Delta \sigma=27.4, \Delta \mathrm{~K}=6.1>6.0$ crack could begin to grow

Needs same high load
iii) In 7 years the devise could have $(7 \mathrm{yr}) \times(365$ day $) \times(12 \mathrm{hr}) \times(5$ lifts $)=150,000$ cycles

Do da/dN analysis using steel upper bound equations
Minimum life is 400,000 cycles
It would take a higher stress to shorten the life

Conclusion from this is that strut was consistently overloaded, about 140 kips instead of 75 kips the design load
$\mathrm{da} / \mathrm{dN}$ vs $\Delta \mathrm{K}$ analysis

Use generic steel upper bound CGR, $\mathrm{a}_{0}=0.02 \mathrm{in}$, $\mathrm{a}_{\mathrm{f}}=1.75 \mathrm{in}, \Delta \sigma=15 \mathrm{ksi}$

$$
\begin{aligned}
& \frac{d a}{d N}=6.6 \times 10^{-9} \Delta K^{2.25} \\
& \Delta K=1.122 \Delta \sigma \sqrt{\pi a}
\end{aligned}
$$

$$
\frac{d a}{d N}=6.6 \times 10^{-9}\left[1.122(15 \sqrt{\pi a}]^{2.25}=1.373 \times 10^{-5} a^{1.125}\right.
$$

$$
N_{f}=\int_{0.02}^{1.75} \frac{d a}{1.373 \times 10^{-5} a^{1.125}}=\frac{1}{1.373 \times 10^{-5}}\left[\frac{a^{-0.125}}{-0.125}\right]_{0.02}^{1.75}=408,000
$$

18. No solution here, open ended,

Look at:
i) Final crack size at beginning of dimples
ii) $\mathrm{K}_{\text {Iscc }}$ at beginning of intergranular surface
iii) Also try to match SS with some da/dN calculations
iv) Try to find the initiation site $\Delta \mathrm{K}_{\mathrm{TH}}$

