Fracture Mechanics – Workshop Solutions

- 1. Given: W = 50 mm., B = 25 mm, $a_0 = 25$ mm, P = 25 kN
- a) a/W = 25/50 = 0.5, then f = 9.66

from compact specimen K calibration table in Lecture 2.1

 $K = Pf/B\sqrt{W} = (.025 \text{ MN})(9.66)/(.025 \text{ m})(\sqrt{.05 \text{ m}}) = 43.2 \text{ MPa}\sqrt{\text{m}}$

Let $\Delta a = 5$ mm then a = 30, a/W = 0.6, f = 13.65,

 $K = (5)(13.65)/(1)(\sqrt{2}) = 61.0$

b) Similar calibrations a = 250, W = 500, P = 80, K = 43.7 a = 255, a/W = .51, f = 9.96, K = 45.1

c) CCT use 2.1 from Tada Handbook (in Section 2)

$$a = 25, b(W) = 5.0 = 2W/2, a/b = 0.2, F = 1.0246;$$

 $\sigma = 1.0 \text{ MN}/(.025 \text{x}.25) \text{ m}^2 = 160 \text{ MPa}$ $K = \sigma \sqrt{\pi a} F$

 $K = (160)\sqrt{(.025\pi)} (1.0246) = 45.9 \text{ MPa}\sqrt{\text{m}}$

 $\Delta a = 5$, a = 30, a/b = 0.24, F = 1.032, K = 50.7

Alternate form: for a/W = 0.2, f = 0.406, P = 1000, $K = (1.0)(.406)/.025\sqrt{.125} = 45.9$

2. K same form as 1c. from Tada 2.10, $\sigma = 200$ MPa, b = 100 mm $K = \sigma \sqrt{\pi a} F$ F = graphical value $/(1 - a/b)^{3/2}/(1 - a/b)^{3/2}$

Example: a = 2.5, a/b = .025, graph = 1.1, $F = 1.1/(1 - 2.5/100)^{3/2} = 1.14$

 $K = 200\sqrt{(.0025\pi)1.14} = 20.2$

а	a/b	graphical value	$(1-a/b)^{3/2}$	F	K
2.5	.025	1.1	.963	1.14	20.2
12.5	.125	1.0	.818	1.23	48.7
37.5	.375	.98	.494	1.98	135.9

3.
$$r_y = (1/2\pi)(K/\sigma_{ys})^2$$

K = 43.2 MPa \sqrt{m} , σ_{ys} =240 MPa, $r_y = (1/2\pi)(43.2/240)^2 = .0052 \text{ m} = 5.2 \text{ mm}$

W - a = 25 mm,
$$r_y/(W - a) = 0.208 = 21\%$$

 σ_{ys} = 1200, r_y = 0..21, 0.8%

after
$$\Delta a = 0.2$$
, K = 61, r_y = $(1/2\pi)(61/240)^2 = 0.0103$ m = 10.3 mm

 $\sigma_{\rm ys}$ =240 MPa , W - a = 20, $r_{\rm y}/(\text{W-a})$ = 0.515 or 52 %

 σ_{ys} = 1200, r_y = 0.41 mm, 2.0%

4. $K_1 = 200(\Delta a)^{0.2}$, $K_2 = 100 (\Delta a)^{0.05}$

Δa	K ₁	K ₂
.01	79.6 ksi√in	79.4
.05	109.9	86.1
.1	126.2	89.1
.5	174	96.6

See plots for complete curves

5. Approximate reading of P - v graph

 $P_Q = 31 \text{ kips}, P_{max} = 33$

a/W = 2.1/4 = 0.525, f = 10.45

 $K_Q = (31)(10.45)/2\sqrt{4} = 81 \text{ ksi}\sqrt{\text{in}},$

Validity: $P_{max}/P_Q = 33/31 = 1.065 < 1.1$, OK

 $2.5(K_Q / \sigma_{ys})^2 = 2.5(81/100)^2 = 1.64 < 2$ (B) or 2.1(a) OK

 $0.45 < 0.525 < 0.55, a_o/W$ OK

 $K_Q = K_{Ic} = 81 \text{ ksi} \sqrt{\text{in}}$

 $R_{sc} = [2P_{max}(2W + a)]/[B(W - a)^2\sigma_{ys}]$

= $[2 (33 \text{ kips})(2x4 + 2.1) \text{ in}]/[(2.0\text{in})(1.9 \text{ in})^{2}(100 \text{ ksi})] = 0.92$

(in the linear elastic range) $K_{I\!c}\,SI\!:$

 $P_Q = 31 \text{ kipsx}(4.448) = 138 \text{ kN}, P_{max} = 148 \text{ kN}$

a/W = 52.5/100 = 0.525, f = 10.45

 $K_Q = (0.138)(10.45)/.05\sqrt{.1} = 91.2 \text{ MPa}\sqrt{m},$

Validity: $P_{max} / P_Q = 148 / 138 = 1.07 < 1.1$, OK

 $2.5(K_Q / \sigma_{ys})^2 = 2.5(91.2/700)^2 = 0.042 \text{ m} = 42.4 \text{ mm} < 50 \text{ (B) or } 52.2(a) \text{ OK}$

 $0.45 < 0.525 < 0.55, a_o/W$ OK

 $K_Q = K_{Ic} = 91.2 \text{ MPa}\sqrt{m}$

 $R_{sc} = [2P_{max}(2W + a)]/[B(W - a)^2\sigma_{ys}]$

 $= [2 (.148)(2x.1 + .052) in] / [(.05)(.0475)^{2}(700)] = 0.94$

(in the linear elastic range)

6. Take points 5 and 6 as example

 $da/dN = (0.79 - 0.73)/(125,000 - 95,000) = 0.060/30,000 = 2.0x10^{-6}$

 $a_{ave} = (0.73 + 0.79)/2 = 0.76$, a/W = 0.38, f = 6.91, $\Delta P = 1000 - 100 = 900$,

da/dN <u>,_</u> in/cyc	ΔK, ksi√in
1.162×10^{-6}	14.5
1.351×10^{-6}	15.0
1.333 x10^{-6}	1.5.7
1.6×10^{-6}	16.5
2.0 x10 ⁻⁶	17.6
2.33×10^{-6}	19.1
$3.0 \times 10^{-6} e$	21.4
4.4 x10 ⁻⁶	25.2
8.0 x10 ⁻⁶	30.0
$16.0 \text{ x}10^{-6}$	39.3
40 x10 ⁻⁶	61.3

 $\Delta K = (900)(6.91)/(0.25\sqrt{2}) = 17,600 \text{ psi}\sqrt{\text{in}} = 17.6 \text{ ksi}\sqrt{\text{in}}$

Plot log da/dN vs ΔK and fit equation result is,

 $da/dN = 1.44 \times 10^{-9} (\Delta K)^{2.5}$

(see attached plots)

- 7. $\Delta K = 5.0 \text{ ksi}\sqrt{\text{in}}$, a = 0.6 in, a/W = 0.3, f = 5.62
- $\Delta \mathbf{K} = \Delta \mathbf{P} \mathbf{f} / \mathbf{B} \sqrt{\mathbf{W}} = \Delta \mathbf{P} (5.62) / (0.25 \sqrt{2}) = 5,$

 $\Delta P = 0.315 \text{ kips}$

or P ranges from 100 to 415 lbs

Workshop 6 - da/dN vs ²K

Workshop Prob 6 log - log fit

8. W = 2.0, B = 1.0, $a_0 = 1.0$ (all in.) a/W = 0.5, E = 30,000 ksi

BEv/P = 36.98, f = 9.66

P = (1.0)(30,000)(0.012)/36.98 = 9.73 kips

 $K_o = (9.73)(9.66)/(1\sqrt{2}) = 66.5$

 $a_f = 1.5$, a/W = 0.75, BEv/P = 185.4, f = 28.86,

P = (1.0)(30,000)(0.012)/185.4 = 1.94 kips

 $K_f = (1.94)(28.86)/(1\sqrt{2}) = 39.6 \text{ ksi}\sqrt{\text{in}}$

Workshop 4

1. $W = 0.05 \text{ m}, B = 0.025 \text{ m}, a_0 = 0.04 \text{ m} \text{ a/W} = 0.5, E = 210,000 \text{ MPa}$

BEv/P = 22.88, f = 7.28

P = (0.025)(210,000)(0.00025)/22.88 = 0.05736 MN (57.4 kN)

 $K_o = (0.05736)(7.28)/(0.025\sqrt{0.05}) = 74.7 \text{ MPa}\sqrt{m}$

 $a_f = 40$, a/W = 0.80, BEv/P = 305.5, f = 41.2,

P = (0.025)(210,000)(0.00025)/305.5 = 0.0043 MN

 $K_f = (0.0043)(41.2)/(0.025\sqrt{0.05}) = 31.7 \text{ MPa}\sqrt{m}$

2. $\sigma = P/A = 1.0 / (0.025 \times 0.1) = 400$ MPa, $K = \sigma \sqrt{(\pi a)}$ F,

a, mm	a/b	F	K, MPa√m	comment
Try 20	0.2	1.37	137.4	too high
10	0.1	1.195	84.7	too low
11	0.11	1.21	90.0	close
11.2	0.112	1.215	91.2	good

a) for 91.2 MPa \sqrt{m} from Workshop 2, cannot solve a_{cr} directly make a table

Then, $a_{cr} = 11.2 \text{ mm}$

Alternate form: $K = 91.2 = Pf/B\sqrt{W} = 1.0f/0.025\sqrt{.1}$; f = 0.721, a/W = .1125, $a_{cr} = 11.25$ mm

b) For = σ_{ys} = 350 and σ = 400 the plate is already yielded. No defect allowed

$$\sigma = P/A = 1.0 / (1x5) = 50 \text{ ksi}, K = \sigma \sqrt{\pi a} F$$
,

a) for $K_{Ic} = 81.0$ from Prob. 5, cannot solve a_{cr} directly make a table

a, in	a/b	F	K, ksi√in	comment
Try 1.0	0.2	1.37	121	too high
0.5	0.1	1.21	75.8	too low
0.55	0.11	1.22	80.2	close
0.56	0.112	1.22	80.9	good

Then, $a_{cr} = 0.56$ in

Alternate form: $K = 81 = Pf/B\sqrt{W} = 250f/1\sqrt{5}$; f = 0.724, a/W = .1135, $a_{cr} = 0.57$ in

b) For = σ_{ys} = 50 and σ = 50 the plate is already yielded. No defect allowed

10.
$$\sigma$$
 = 50 ksi, K = 1.122 σ √(πa)

 $K_{IEAC} = 40 = 1.122 (50 \sqrt{(\pi a)}, \, a_{EAC} = 0.162$ in.

 $K_{Ic} = 100 = 1.122(50\sqrt{\pi a}), a_{cr} = 1.011$ in.

11.
$$da/dN = 1.44 \times 10^{-9} \Delta K^{2.5}$$

$$a_o = 0.1$$
, $K_{Ic} = 100$, $\Delta \sigma = 30$, $\sigma_{max} = 40$

$$a_f = (1/\pi)(100/1.122x40)^2 = 1.58$$

$$da/dN = 1.44 \times 10^{-9} [1.122 \times 30\sqrt{(\pi a)}]^{2.5} = 3.96 \times 10^{-5} a^{1.25}$$
$$N_f = \int_{0.1}^{1.58} \frac{da}{3.96 \times 10^{-5} a^{1.25}} = \frac{1}{3.96 \times 10^{-5}} \left[\frac{a^{-0.25}}{(-0.25)} \right]_{0.1}^{1.58}$$

 $N_{\rm f} = 89,550$ cycles

12. Treat the pressure vessel wall as a CCT

$$a_{cr} = (1/\pi)(120/40)^2 = 2.86$$
 in

this is the through crack that will cause failure

- a) Consistent shape, a/2c = 0.25, $a_o = 0.5$, $2c_o = 2.0$
- $a_f = 2.0, 2c_f = 8.0, c_f = 4.0 > 2.86$, break
- b) Consistent growth, $\Delta a = 1.5$, $\Delta c = 1.5$, $c_o = 1.0$, $c_f = 2.5 < 2.86$, leak

(however, close to break)

13. Example of first point (all J calculations using initial crack size)

$$a_o = 1.185, a_f = 1.268, \Delta a = 0.083$$
 in.
 $a/W = 0.5925, f = 13.25, P_f = 9.50, K = (9.50)(13.26)/(1\sqrt{2}) = 89.0 \text{ ksi}\sqrt{\text{in}},$
 $J_{el} = K^2(1 - v^2)/E = (89.1)^2(0.91)/(30, 000) = 0.24 \text{ kip-in/in}^2$
 $J_{pl} = \eta(\text{area})/Bb = (2.213)(1020)/(1.0x0.815) = 2770 \text{ in-lb/in}^2 = 2.77 \text{ kip-in/in}^2$
 $b = W - a = 2.0 - 1.185 = 0.815, \eta = 2 + 0.522(b/W) = 2 + 0.522(0.815/2) = 2.213$
 $J_{tot} = J_{el} + J_{pl} = 0.240 + 2.77 = 3.01$

(All J values in.-lb/in²)

J, in-lb/in2	Δa , in
3010	.083
1160	.008
2380	.042
2900	.057
1520	.020
1960	.031
2640	.055

See attached plots to do the $J_{\rm Ic}$ construction, $\sigma_{\rm Y}$ = (70,000 + 90,000)/2 = 80,000 psi

Workshop 6 - J versus ²a

Workshop 6 - J versus ²a with Construction

exclude points 1 and 2,

fit points 3 to 7 with $ln(J) = ln(C_1) + C_2 ln(\Delta a)$

result J = $12,597(\Delta a)^{0.537}$

solve with J = $2x80,000(\Delta a - 0.008)$ (J_Q calculation line)

Need table to ite	rate
-------------------	------

Δa	J_{fit}	J _{line}	comment
.016	1367	1280	Too low
.017	1413	1440	Too high
.0168	1403	1408	close
.01675	1401	1400	correct

 $J_Q = 1400 \text{ in-lb/in}^2$

Validity

$$J_{max} = b_{min} \sigma_Y / 15 = (0.720)(80,000) / 15 = 3840$$
; all points okay

 $25(J_Q)/\sigma_Y = 25(1400) \, / \, (80,000) = 0.44$ in < all B, b

So $J_Q = J_{Ic} = 1400 \text{ in-lb/in}^2$

14. $P_{max} = 12.0$, from construction, $v_{pl} = 0.0085$ in, f = 9.66

$$\begin{split} &K = (12)(9.66)/(1\sqrt{2}) = 82.0\\ &\delta_{el} = K^2(1-\nu^2)/(2\sigma_{ys}E) = (82)^2(.91)/[(2)(30,000)(60)] = 0.0017 \text{in}\\ &\delta_{pl} = r_p \ (W - a_o)v_{pl}/[Z + a_o + r_p \ (W - a_o)] \end{split}$$

load line v, Z = 0; CT, $r_p = 0.46$, $a_o = 1.0$

 $\delta_{pl} = (0.0085)(0.46)(1.0)/[1+0.46(1.0)] = 0.00268$

 $\delta_{tot} = \ \delta_{el} + \delta_{pl} = 0.0017 + 0.00268 = 0.00438 \ in$

15. $K_R = S_R[(8/\pi^2)) \ln\{\sec(\pi S_R/2)\}]^{-1/2}$

when $S_R = 0.9$, K_R , from above = 0.734 is the calibration point

a)
$$\sigma_{ys} = 150, \sigma = 135, K = \sigma \sqrt{\pi a} = 135 \sqrt{(0.025\pi)} = 37.8, K_{Ic} = 50$$

 $K_R = K/K_{Ic} = 37.8/50 = 0.757 > 0.734$

so this point lies outside of the safe area, Unsafe

b) $\sigma_{vs} = 100$, $\sigma = 90$, $K = \sigma \sqrt{\pi a} = 90\sqrt{(0.025\pi)} = 25.2$, $K_{Ic} = 100$

$$K_R = K/K_{Ic} = 25.2/100 = 0.252 < 0.734$$

so this point lies inside of the safe area, Safe

16. $\sigma_m = 30$, Q = 30, $k_t = 3$ (stress concentration factor for hole in a plate)

 $\sigma/\sigma_{o} = \epsilon/\epsilon_{o} = [k_{t}(\sigma_{m} + \sigma_{b}) + Q] = [(3)(30) + 30]/60 = 2.0$

From CTOD design curve, $\Phi = 1.75 = \delta_{cr}/(2\pi \epsilon_o a)$

From prob. 14, $\delta_{cr} = 0.00493$

So, $a_{cr} = \delta_{cr} / (2\pi \epsilon_o \Phi) = (0.00438) / [(2\pi)(60/30,000)(1.75)] = 0.199$ in

17. Look at points of

- i) final failure with $K_{Ic} = 120 \text{ ksi}\sqrt{\text{in}}$
- ii) da/dN initiation from ΔK_{TH} ,
- iii) Life based on da/dN vs ΔK

i)
$$K_{Ic} = 120, K = \sigma \sqrt{(\pi a)} F$$
,

a = 1.75, a/b = 0.35, F = 1.87

 $\Delta \sigma = 0$ to 75/(1x5) = 15 ksi

at $\sigma = 15$ ksi, $K = 15\sqrt{(1.75\pi)(1.87)} = 65.7$ to low

at K = 120, σ = 27.4, and P = 137 kips; looks like a high load

ii) Initiation flaw, a = 0.02, 2c = 0.1, a/2c = 0.2, Q = 1.32,

 $K = 1.122\Delta\sigma\sqrt{(\pi a/Q)}$

If $\Delta \sigma = 15$, $\Delta K = 1.122(15)\sqrt{(0.02\pi/(1.32))} = 3.7$ too low,

If $\Delta \sigma = 27.4$, $\Delta K = 6.1 > 6.0$ crack could begin to grow

Needs same high load

iii) In 7 years the devise could have (7yr)x(365 day)x(12 hr)x(5 lifts) = 150,000 cycles

Do da/dN analysis using steel upper bound equations

Minimum life is 400,000 cycles It would take a higher stress to shorten the life Conclusion from this is that strut was consistently overloaded, about 140 kips instead of 75 kips the design load da/dN vs ΔK analysis

Use generic steel upper bound CGR, $a_{\rm 0}$ = 0.02 in , $a_{\rm f}$ = 1.75 in, $\Delta\sigma$ = 15 ksi

$$\frac{da}{dN} = 6.6x10^{-9} \Delta K^{2.25}$$

$$\Delta K = 1.122 \Delta \sigma \sqrt{\pi a}$$

$$\frac{da}{dN} = 6.6x10^{-9} \left[1.122(15\sqrt{\pi a}) \right]^{2.25} = 1.373x10^{-5} a^{1.125}$$

$$N_f = \int_{0.02}^{1.75} \frac{da}{1.373 \times 10^{-5} a^{1.125}} = \frac{1}{1.373 \times 10^{-5}} \left[\frac{a^{-0.125}}{-0.125} \right]_{0.02}^{1.75} = 408,000$$

18. No solution here, open ended,

Look at:

- i) Final crack size at beginning of dimples
- ii) K_{Iscc} at beginning of intergranular surface
- iii) Also try to match SS with some da/dN calculations
- iv) Try to find the initiation site ΔK_{TH}