Workshop 4

Fracture and Fatigue Applications

Bolt Load Problem

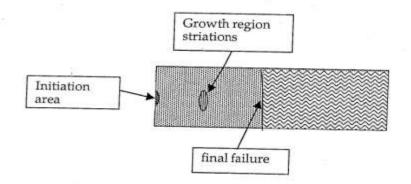
- A bolt loaded compact K_{IEAC} specimens is tested as follows:
- W = 50 mm, B = 25 mm, $a_o = 20$ mm in, E = 210 GPa
- •
- a) The K_{Iscc} specimen is loaded with the load line displacement $v_{II} = 0.25$ mm and placed in an environmental test chamber. The crack grows to 40 mm and arrests. Find the K_{Iscc} assuming that the load line displacement was remaining constant.

Critical Defect Problem

- For the SI K_{lc} result in Workshop 2 and σ_{ys} = 700 Mpa
- a) What is the critical defect size for a plate that is 100 mm wide and 25 mm thick with an edge defect and loaded in tension to 1.0 MN.
- •
- b) What is the critical defect size if the K_{ic} is doubled and the yield stress halved
- •
- •
- •
- •
- •

Cyclic Life Problem

- Use the result of the da/dN vs ΔK test in prob 6 to predict the fatigue life for a semiinfinite SENT geometry with
- $a_o = 0.1$ in, $K_{Ic} = 100$ ksi \sqrt{In}
- and stress range is 10 to 40 ksi


Fracture Mechanics Used in Fractography

1. Use fracture surface as a guide to the behavior of the component

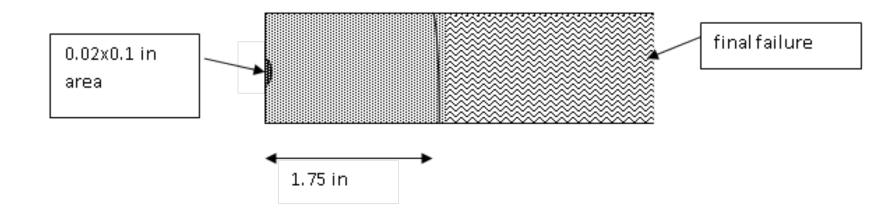
- 2. Stages in failure
 - i) Crack initiation (or pre-existing crack)

ii) Crack Propagation, fatigue crack growth, stress corrosion cracking

iii) Final Failure

3. Examples of calculations of behavior

- i) Initiation, S-N or, ε-N
- ii) Growth, $da/dN vs \Delta K$
- iii) Failure, K_{Ic}


Failure Problem

- A tension strut from a lifting devise has a 1x5 in. cross-section. It is rated to carry 75 kips maximum. The lifting devise picks up loads about 5 times an hour during operation. It had a design life of 25 years.
- •
- A failure of the strut occurred after about 7 years of operation. Examination of the fracture surface revealed the following:
- i) A small area on the edge was discolored (about 0.02x0.1 in). This appeared to be the initiation point of the failure.
- ii) The area around this looks like fatigue

Material Properties

- Assume properties of the material:
- a) Generic da/dN vs ΔK generic for steel da/dN = $6.6 \times 10^{-9} \Delta K^{2.25}$
- b) ΔK_{TH} is about 6.0 ksi \sqrt{in}
- c) K_{lc} is about 120 ksi \sqrt{in}
- Do an evaluation of this failure using the principles from the course. Consider evidence from each of the observations on the fracture surface.
- •
- •

Fracture Surface

