### Lecture 3

### Fracture Toughness Testing Requirements

### Fracture toughness

- 1. Resistance to crack extension under monotonic loading
- 2. Measured for LEFM by  $K_{Ic}$
- 3.  $K_{Ic}$  test is ASTM E 399
- 4. Usual measurement is  $K_{lc}$  versus temperature



Temperature

Fig. 1 - Schematic Showing Region of Ductile Fracture

1.4

5

### Summary of an ASTM Standard Test Method

1. ASTM Standards have a set outline that the standard writers follow

2. It is difficult for a person to read and follow this outline when conducting a test

3. All standards for fracture testing have identical features that are as follows:

### Test Method Summary; features

- a. Specimen, preparation and precracking
- b. Test fixtures and instrumentation
- c. Test procedure
- d. Test result evaluation
- e. Validity checks
- f. Reporting

## ASTM Background

- 1. ASTM founded in 1898
- 2. By 2007 there were 80 volumes with 12,000 + standards
- 3. Standard writing task group (or working group)
- 4. Consensus balloting Subcommittee, Main committee and society review: one negative stops the standard
- 5. Website: www.astm.org

### Fracture testing

- Goal Test a laboratory specimen and relate its behavior to a structural component
- Result of a fracture test is called fracture toughness
- For linear-elastic behavior the result is characterized in terms of K

# Fracture Testing: components of a test

- 1. Choose a specimen
- 2. Introduce a crack into the specimen
- 3. Get test machine and instrumentation
- 4. Test to failure; get failure data
- 5. Relate failure data to a critical K
- 6. Repeat test for a range of temperatures

#### Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials<sup>1</sup>

This standard is issued under the fixed designation E 399; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript equilon (e) indicates an editorial charge since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

#### 1. Scope

1.1 This test method covers the determination of the planestrain fracture toughness ( $\hat{K}_{tc}$ ) of metallic materials by tests using a variety of fatigue-cracked specimens having a thickness of 0.063 in. (1.6 mm) or greater.<sup>2</sup> The details of the various specimen and test configurations are shown in Annex A1-Annex A7 and Annex A9.

Nora 1—Plane-strain fracture toughness tests of thinner materials that are sufficiently brittle (see 7.1) can be made with other types of specimens (1).<sup>3</sup> There is no standard test method for testing such thin materials.

1.2 This test method also covers the determination of the specimen strength ratio  $R_{xx}$  where x refers to the specific specimen configuration being tested. This strength ratio is a function of the maximum load the specimen can sustain, its initial dimensions and the yield strength of the material.

1.3 Measured values of plane-strain fracture toughness stated in inch-pound units are to be regarded as standard.

1.4 This test method is divided into two main parts. The first part gives general information concerning the recommendations and requirements for  $K_{lec}$  testing. The second part is composed of annexes that give the displacement gage design, fatigue cracking procedures, and special requirements for the various specimen configurations covered by this method. In addition, an annex is provided for the specific procedures to be followed in rapid-load plane-strain fracture toughness tests. General information and requirements common to all specimen types are listed as follows:

|                                 | Sections    |
|---------------------------------|-------------|
| Referenced Documents            | 2           |
| Terminology                     | 3           |
| Stress-Intensity Factor         | 3.1.1.2     |
| Plane-Strain Fracture Toughness | 3.1.2.3     |
| Summary of Test Method          | 4           |
| Significance and Use            | 5           |
| Precautions                     | 5,1.1-5,1.3 |
|                                 |             |

<sup>1</sup> This test method is under the jurisdiction of ASTM Committee E-8 on Fatigue and Fracture and is the direct responsibility of Subcommittee E08.07 on Linear-Blastic Practure.

Current edition approved Nov. 30, 1990. Published April 1991. Originally published as E 399 - 70 T. Last previous edition E 399 - 83.

\* For additional information relating to the fracture toughness testing of alumiinum alloys, see Method B 645.

<sup>3</sup> The boldface numbers in parentheses refer to the list of references at the end of this test method.

2

|                                             | Sections  |
|---------------------------------------------|-----------|
| Practical Applications                      | 5.2       |
| Apparatus                                   | 6         |
| Loading Fixtures                            | 6.2       |
| Displacement Gage Design                    | Annex A1  |
| Displacement Measurements                   | 6.3       |
| Specimen Size, Configurations, and Prepara- | 7         |
| tion                                        |           |
| Specimen Size Estimates                     | 7.1       |
| Standard and Alternative Specimen Configu-  | 7.2       |
| rations                                     |           |
| Forms of Fatigue Crack Starter Notch        | 7.3.1     |
| Faligue Cracking                            | Annex A2  |
| <b>Crack Extension Beyond Starter</b>       | 7322      |
| Measurements before Testing                 |           |
| Thickness                                   | B.2.1     |
| Width                                       | 8.2.3     |
| Starter Notch Root Radius                   | 7.3.1     |
| Specimen Testing                            | 1.254.1   |
| Loading Rate                                | 8.3       |
| Test Record                                 | 8.4       |
| Measurements after Testing                  |           |
| Crack Length                                | 8.2.2     |
| Crack Plane Angle                           | 8.2.4     |
| Calculation and Interpretation of Results   | 9         |
| Analysis of Test Record                     | 9.1       |
| Validity Requirements on PaulPo             | 9.1.2     |
| Validity Requirements on Specimen Size      | 9.1.3     |
| Creck Plane Orientation Designations        | 9.2       |
| Fracture Appearance Descriptions            | 9.3       |
| Reporting                                   | 10        |
| Precision and Bias                          | 11        |
| Special Requirements for Rapid Load K. (A   | Armers A7 |
| Tarle                                       |           |

1.5 Special requirements for the various specimen configurations appear in the following order:

| Bend Specimen SE(B)                | Annex A3 |
|------------------------------------|----------|
| Compact Specimen C(7)              | Annex A4 |
| Arc-Shaped Tension Specimen A(7)   | Annex A5 |
| Disk-Shaped Compact Specimen DC(T) | Annex A6 |
| Aro-Shaped Bend Specimen A(B)      | Annex A9 |

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

#### 2. Referenced Documents

2.1 ASTM Standards:

E 8 Test Methods for Tension Testing of Metallic Materials"

e .....

<sup>\*</sup> Annual Book of ASTM Standarstr, Vol 03.01.

### Latest K<sub>Ic</sub> Standard

### ASTM E399 - 09 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials

B. The KIC Test

KIC is a measure of the plane strain, linear elastic fracture toughness.

ASTM E 399:

1. Fatigue Precracking



### **ASTM Test Specimen**

- 1. Standard
  - Compact C(T)
  - Single Edge Bend SE(B)
- 2. Special
  - Disk-shaped Compact DC(T)
  - Arc-shaped tensile A(T)
  - Arc-shaped bend A(B)





Fracture toughness test specimens



with Three Point Loading



<u>Compact Specimen</u> with Pin and Clevis Loading



### **Precracking Requirements**

- 1.  $E 399 K_{lc}$ 
  - $K_{max} \leq 0.6 K_Q$
  - $K_{max} \le (0.00032 \text{ m}^{0.5})\text{E}$

1. E 1820  

$$P_{f} = \frac{0.4B(W-a)^{2}\sigma_{ys}}{(2W+a_{o})}$$

### Fixtures

- 1. Bend fixture for bend testing
- 2. Pin and clevis for tension testing
- 3. Some machines have clamps for tension testing
- 4. Fixtures must be designed for good mechanical performance



Roller pins and specimen contact surface of loading ram must be parallel to each other within 0.002 W. 210 in. = 2.54 mm, 0.15 in. = 3.81 mm.

FIG. A3.2 Bend Test Fixture Design

低》E 399



Note I—Pin diameter = 0.24 W (+0.000 W/-0.005 W). For specimens with  $\sigma_{YS}$ > 200 ksi (1379 MPa) the holes in the specimen : may be 0.3 W (+0.005 W/-0.000 W) and the pin diameter 0.288 W (+0.000 W/-0.005 W).

Note 2-0.002 in. = 0.051 mm.

Nore 3-Corners of the clevis may be removed if necessary to accommodate the clip gage.

FIG. A4.2 Tension Testing Clevis Design

### **Test Machines**

- Servo-hydraulic good for fatigue, rapid load, special control; can use for fracture testing but not necessary
- 2. Screw driven good for fracture and tensile but lacks control for fatigue
- 3. Machine load cell must meet requirements in the standard
- 4. Use care for using servo-hydraulic

### Instrumentation

- 1. Load cell calibration and A/D conversion
- 2. Displacement gages
  - Mechanical
  - Clip gage
  - LVDT
  - Other e.g. laser, capacitance
  - Gages have calibration and A/D conversion requirements







# Misc. details for testing

- 1. Precracking, cyclic loading in a servo-hydraulic machine should be done in load control
- 2. The test, monotonic loading, should be done in displacement or crosshead control
- 3. Side grooving should be done after precracking
- 4. Heating or cooling is done in a furnace or cold box. Soak times are a function of thickness (30 min/in)
- 5. Temperatures should be controlled to ± 3 °C

### **Test Procedure**

- 1. Load in displacement control with a controlled rate while measuring load and displacement
  - Measurement is usually analog
  - Originally measured on a recorder
  - Now measured digitally with a computer
- 2. Loading rate must be between 30 and 150 ksi\*in<sup>0.5</sup>/min
  - Slow enough to avoid dynamic effects
  - Fast enough to avoid time dependent effects

# Test procedure (cont.)

- Continue loading specimen until specimen fractures or a maximum load is passed
- 4. Identify  $P_Q$  and  $P_{max}$ 
  - $P_Q$  is the highest load up to a 5 % secant crossing
  - P<sub>max</sub> is the highest load
- 5. Measure the fatigue crack length,  $a_o$
- 6. Calculate  $K_Q$  from  $P_Q$

# 2. Load to Failure and Determine $P_{o}$ .



3. Measure Crack Length at 3 Evenly Spaced Locations



$$a = \frac{a_1 + a_2 + a_3}{3}$$

4. Calculate K<sub>Q</sub>

$$K_{\rm Q} = \frac{P_{\rm Q}}{B\sqrt{W}} f(a/W)$$

where f is a dimensionless function of a/W.



Crack Extension, ∆a

### Schematic R Curve Definition of KIc

Fracture Resistance, K

### Validity Checks

1.  $0.45 \le a/W \le 0.55$ 

1.  $P_{max} \leq 1.10 P_Q$ 

3.  $a,B \ge 2.5(K_Q/\sigma_{ys})^2$ 

If validity checks are satisfied,  $K_Q = K_{Ic}$ 

### Plastic Zone Size for Limit to LEFM



$$r_{p} = \frac{1}{2\pi} (\frac{K}{\sigma_{ys}})^{2}$$

For LEFM to prevail r<sub>p</sub> must be small with respect to specimen dimensions a, W, B

or use K Ic test requirement

$$a, B \ge 2.5(\frac{K_{Ic}}{\sigma_{ys}})^2$$

### Stress ratios for E 399

- When the K<sub>Ic</sub> test is invalid, a stress ratio can be calculated to see how much the invalidity was
- Stress ratio, R<sub>s</sub>, is the mechanics of materials nominal stress at the crack tip divided by the yield strength
- 3. An example is the  $R_s$  for the compact specimen

# Stress ratios for E 399 (cont.)

3. An example is the  $R_s$  for the compact specimen

$$R_{sc} = \frac{\left[2P_{\max}\left(2W+a\right)\right]}{\left[B(W-a)^2\sigma_{ys}\right]}$$

### 4. For

- R<sub>sc</sub> < 1.0 linear-elasticity holds
- $R_{sc} > 2.0$  the result is nearly fully plastic
- 1.0 < R<sub>sc</sub> <2.0 the result ranges from nearly elastic to nearly fully plastic

### Lecture 4

• Fracture Toughness Properties



Temperature dependence of K<sub>Ic</sub> for A533B steel



Compact Specimens from 1 to 12 inches thick



Fig. 24—Temperature dependence of 0.2% yield strength and K  $_{
m Ic}$  for 7079-T6 aluminum









### Sources of Fracture Toughness Data - N

- Fracture toughness data is needed to conduct a FM analysis for safety and reliability
- There are many sources of toughness data, but may not be easy to find.
- Also, there can be variability that makes the use uncertain

WL-TR-94-4052 Volume 1, Chapters 1, 2, 3 and 4

### DAMAGE TOLERANT DESIGN HANDBOOK

D.A. Skinn, J.P. Gallagher, A.P. Berens, P.D. Huber, J. Smith

University of Dayton Research Institute 300 College Park Dr Dayton, OH 45469-0120

May 1994 Final Report for Period June 1991 - May 1994







÷i

DOT/FAA/CT-93/69.II DOT-VNTSC-FAA-93-13.II

FAA Technical Center Atlantic City Airport, NJ 08405

### Damage Tolerance Assessment Handbook

Volume II: Airframe Damage Tolerance Evaluation

5.





This document has been approved



#### TABLE 3.0.2 (CONTINUED)

#### PLANE STRAIN FRACTURE TOUGHNESS VALUES OF ALLOY STEELS AT ROOM TEMPERATURE

| Alloy    |                                                                          |                 | Range of                      | $K_{Ie}$ (Ksi $\sqrt{in}$ ) |    |       |            |                    |    |       |            |                    |   |      |            |
|----------|--------------------------------------------------------------------------|-----------------|-------------------------------|-----------------------------|----|-------|------------|--------------------|----|-------|------------|--------------------|---|------|------------|
|          | Condition/                                                               | Product<br>Form | Product<br>Thickness<br>(in.) | Specimen Orientation        |    |       |            |                    |    |       |            |                    |   |      |            |
|          | Heat Treatment                                                           |                 |                               | L-T                         |    |       | T-L        |                    |    | S-L   |            |                    |   |      |            |
|          |                                                                          |                 |                               | Min<br>Spec<br>Tiık         | n  | Mean  | Std<br>Dev | Min<br>Spec<br>Thk | n  | Mean  | Std<br>Dev | Min<br>Spec<br>Thk | n | Mean | Std<br>Dev |
|          | Unspecified                                                              | Forging         | 1.25                          | 2.00                        | 2  | 150.6 | 4.6        | 2.00               | 2  | 136.3 | 16.8       |                    | a |      |            |
|          | 1525F OQ -100P 1HR 1065F 4+4HR                                           | Forging         | 4.00                          |                             |    |       |            | 1.50               | 2  | 111.7 | 2.0        |                    | • |      |            |
|          | 1650F 1-2HR AC L-2HR 1-2HR AC<br>-100F 1.5HR 1025F 4HR 1060F 4HR         | Plate           | 2.50                          | 2.00                        | 2  | 123.5 | 12.0       |                    |    |       |            |                    | - | -    |            |
|          | 1650F 1-211R AC 1525F 1-21HR OQ<br>-100F 1-211R 1025F 411R               | Forging         | 4.00-7.00                     | 1.75                        | Б  | 134.8 | 12.3       | 1.76               | 3  | 109.7 | 4.7        | 1                  |   | 1    |            |
|          | 1650F 1-211R AC 1525F 1-21IR OQ                                          | Plate           | 2,60                          | 2.00                        | 2  | 121.5 | 29.0       |                    |    |       |            | 1                  |   |      |            |
|          | -100F 2HR 1925F 4-6HR                                                    | Forging         | 4.00                          | 1.51                        | 15 | 135.2 | 11.6       | 1.61               | \$ | 125.9 | 1.8        |                    | ~ | -    |            |
| 1129-420 | 1650F 1-2HR AC 1626F 1-2HR OQ<br>-100F 2HR 1050F 4-6HR                   | Forging         | 1.70-3.25                     | 1.50                        | 6  | 133.2 | 3.9        |                    |    |       |            |                    |   |      |            |
|          | 1650F 1-2HR ACK                                                          | Forging         | 4.00                          | 1.65                        | 2  | 125.5 | 3.5        |                    | -  |       |            |                    | - |      |            |
|          | 1650F 2HR AC 1625F 2HR OQ<br>1000F 2+2HR AC                              | Forging         | 4.00                          | 1.24                        | 3  | 94.4  | 4.6        | •                  |    |       |            |                    |   |      |            |
|          | 1650F 4.611R AC TO 900F HELD<br>0.511R AC -100F 1.511R 1025F 8HR<br>A-BQ | Porging         | 4.00                          | 1.59                        | 2  | 128.6 | 0.7        | •••                |    |       |            | -                  |   |      |            |
|          | 1700F 4.5HR AC 1700F 1.5HR AC<br>-100F 1.5HR 1025F 4HR                   | Forging         | 4.00                          | 1.60                        | 2  | 140.5 | 0.7        |                    |    |       |            | 1                  |   |      |            |
|          | ANNEALED                                                                 | Forging         | 3.00                          | 1.00                        | 12 | 120.6 | 7.3        | 2.00               | 3  | 117.7 | 1.9        |                    |   |      |            |
|          | HEAT TREATED                                                             | Forging         | 5.40-7.00                     | 1.50                        | 10 | 140.7 | 4.5        | 1.46               | 7  | 132.3 | 6.6        |                    |   |      |            |

#### TABLE 8.0.2 (CONTINUED)

#### PLANE STRAIN FRACTURE TOUGHNESS VALUES OF ALUMINUM 7000/8000 SERIES ALLOYS AT ROOM TEMPERATURE

| Alloy            |                              | K <sub>Ic</sub> (Ksi√in) |                               |                      |     |              |            |                    |     |      |            |                    |    |          |            |
|------------------|------------------------------|--------------------------|-------------------------------|----------------------|-----|--------------|------------|--------------------|-----|------|------------|--------------------|----|----------|------------|
|                  | Condition/<br>Heat Treatment | Product<br>Form          | Product<br>Thickness<br>(in.) | Specimen Orientation |     |              |            |                    |     |      |            |                    |    |          |            |
|                  |                              |                          |                               | L-T                  |     |              | T-L        |                    |     |      | S-1.       |                    |    |          |            |
|                  |                              |                          |                               | Min<br>Spec<br>Thk   | n   | Mean         | Stđ<br>Dev | Min<br>Spec<br>Thk | n   | Mean | Std<br>Dev | Min<br>Spec<br>Thk | n  | Mean     | Std<br>Dav |
|                  | T7151 1                      | Extrusion                | 0.75-1.60                     | 0.73                 | 4   | 40.4         | 5.0        |                    |     |      |            |                    |    |          |            |
| 7050<br>(Cent'd) | <b>T74</b> 52                | Forging                  | 4 00                          | 1.00                 | 2   | <b>3</b> 1.1 | 1.2        | t.00               | з   | 23.6 | 8.0        | ***                |    |          | •••        |
|                  | T7651                        | Jilato                   | 0.75-1.00                     | 0.74                 | 6   | 33.4         | 2.8        |                    |     |      |            |                    |    | <b>.</b> |            |
|                  | T7651 I                      | Extrusion                | 0.75-1.63                     | 0.73                 | а   | 34.8         | 6.6        |                    |     |      |            |                    |    |          |            |
|                  | T7E56                        | Forging                  | 5.00                          |                      | ••• |              |            | 0.76               | 4   | 28.9 | 3.0        |                    |    |          |            |
|                  | Të                           | Forging                  | 0.60-0.89                     | 0.50                 | 2   | <b>24.</b> 5 | 0.1        | 0.25               | 2   | 20.9 | 1.7        | 0.50               | 4  | 16.8     | 0.4        |
|                  |                              | Extrusion                | 2.00                          | ,                    |     |              |            | 0.75               | 5   | 19.9 | 0.2        | 0.75               | 3  | 18.5     | 0.2        |
|                  | 7661                         | ilate                    | Q.37-5.00                     | 0.51                 | 63  | 26.5         | 2.0        | 0.38               | 76  | 22.5 | 20         | 0.60               | 11 | 17.6     | 2.7        |
|                  |                              | Extrusion                | 3.00-6.00                     | 1.50                 | 4   | 31.1         | 0.5        | 1.60               | б   | 20.2 | 0.2        |                    |    |          |            |
|                  |                              | Rolled Uur               | 5.00                          | 1.60                 | 2   | 34.1         | 0.5        |                    | •   |      |            |                    |    |          |            |
|                  |                              | Entracion                | 0.68-3.50                     | 0.60                 | 12  | 27.6         | 2.1        | 0.50               | 18  | 23.9 | 1.6        | 0.25               | 3  | 20.0     | 1.3        |
| 7075             | T6510                        | Forged Bar               | 0.68-5.00                     | 0.62                 | 13  | 29.2         | 3.4        | 0.50               | 13  | 21.4 | 1.5        | 0.25               | 7  | 18.7     | 0.9        |
|                  | 76511                        | Extrusion                | 1.26                          | 1.22                 | 2   | 27.9         | 1.4        | 1.17               | 4   | 26.9 | 1.5        |                    |    |          |            |
|                  | 773                          | Forging                  | 1.00                          |                      |     |              | -          |                    | · _ |      | -          | 0.60               | 4  | 19.1     | 0.5        |
|                  | <b>T</b> 7351                | Plate                    | 1.00-4.00                     | 0.51                 | 47  | 29.4         | 2.2        | 0.51               | 36  | 26.2 | 3.2        | 0.50               | 7  | 16.6     | 0.4        |
|                  | <b>T7351</b> 0               | Extrusion                | 0.68-5.60                     |                      |     | -            | -          | 0.50               |     | 24.6 | 2.5        | 1.00               | 2  | 20.3     | 0.8        |
|                  | T73511                       | Extrusion                | 3.50                          | 1.63                 | 4   | 39.6         | 8.1        | 1.76               | 3   | 26.8 | 1.1        | 1.00               | 2  | 21.9     | 1.1        |

ł

### Data from Hertzberg

TABLE 8.2 Plone Strain Fracture Toughness of Selected Engineering Alloys



|              | K <sub>ji</sub> |         | 0 <sub>31</sub> |     |       |         |  |  |
|--------------|-----------------|---------|-----------------|-----|-------|---------|--|--|
| Material     | MPa√m           | ksi√in. | MPa             | ksi | ការគ  | st      |  |  |
| 2014-7651    | 24.2            | 22      | 455             | 66  | 3.6   | 0.14    |  |  |
| 2614-1001    | ~44.            | 43      | 345             | 50  | ~21.  | ~0.82   |  |  |
| 2024-10      | 26.4            | 24      | 455             | 66  | 4.3   | 0.17    |  |  |
| 2024-2051    | 24.2            | 22      | 495             | 72  | 3.Ŭ   | 0.12    |  |  |
| 2128-1651    | 23.1            | 25      | 570             | 83  | 2.1   | 0,68    |  |  |
| 7178-77651   | 33.             | 30      | 490             | 71  | 5.8   | 0.23    |  |  |
| TT 6 41 417  | 115.4           | 165     | 910             | 132 | 20.5  | 0.81    |  |  |
| Ti-6Ai-4V    | 55.             | 50      | 1035            | 150 | 3.6   | 0.14    |  |  |
| 4340         | 98.9            | 90      | 860             | 125 | ł6.8  | 9.66    |  |  |
| 4340         | 60.4            | 55      | 1515            | 223 | 2.    | (9.08   |  |  |
| 4335 ± V     | 72.5            | 66      | 1340            | 194 | 3.7   | 0.15    |  |  |
| 17.7014      | 76.9            | 70      | 1435            | 208 | 3.6   | 0.14    |  |  |
| 15.754.0     | 49.5            | 45      | 1415            | 205 | 1.5   | 0,06    |  |  |
| Sa Fi        | 38.5            | 35      | 1790            | 260 | < 0.6 | < 0.02  |  |  |
| 4.11         | 27.5            | 25      | 2070            | 300 | 0.23  | 0.009   |  |  |
| 350 Marsaine | 55              | 50      | 1550            | 225 | 1.6   | 0.96    |  |  |
| 350 Maraaine | 38.5            | 35      | 2240            | 325 | < 0.4 | < 0.02  |  |  |
| 52100        | ~14.3           | ~13     | 2070            | 300 | ~0.06 | < 0.002 |  |  |

yield strength is elevated. Consequently, there is a price to pay when one wishes to raise the strength of a material. More will be said about this in Chapter Ten.

- EXAMPLE 2 Assume that a component in the shape of a large direct is to be fabricated from 0.45C-N:-Cr-Mo steel. It is required that the tritical flaw size be preater than 3 mm, the resolution limit of available flaw detection procedures. A design stress level of one-half the tensile strength is indicated. To save weight, en increase in the tensile strength from 1520 MPa to 3070 MPa.
- 304 / FRACTURE MECHANICS OF ENGINEERING MATERIALS

1 A. A. A. A.

# $K_{Ic}$ Correlations - N

- A frequently used correlation is from Charpy Impact energy (CVN)
- The test is ASTM E 23
- Correlations between CVN energy and K<sub>Ic</sub> is usually very material specific

### Picture of Charpy Impact Tester - N



### **CVN Test Result**



Fig. 5  $\sim$ Charpy V-notch impact properties of A508 Cl 2(Swedish Grade) pressure vessel steel

### Begley - Logsdon Correlation - N

- This was for steel alloys with a ductile to brittle transition
- Four points are determined on a K<sub>Ic</sub> versus temperature plot
- All data are ksi-in<sup>1/2</sup> and <sup>o</sup> F



Temperature

Fig. 1 - Schematic Showing Region of Ductile Fracture

14

14

### Points - N

- Point 1: K<sub>lc</sub> = 25 ksi-in<sup>1/2</sup> at 320° F
- Point 2:  $K_{lc}$  = 0.45  $\sigma_{ys}$  at 0 % Ductile
- Point 3: Use the following correlation at 100 % ductile

$$\left(\frac{K_{Ic}}{\sigma_{ys}}\right)^2 = 5 \left(\frac{CVN}{\sigma_{ys}} - 0.05\right)$$

• Point 4: At 50 % FATT average Points 2 and 3

### **Begley Logsdon Prediction**



Fig. 13-Temperature dependence of the plain strain fracture toughness ( $K_{IC}$ ) of a NiMoV steel (1149)

### Other types of fracture behavior

- 1. K-R curve used for thin sheet fracture toughness, mainly, aerospace
- 2. Dynamic fracture toughness,  $K_{lc(t)}$  used for impact, seismic and other rapid loading
- 3. Crack Arrest,  $K_{Ia}$  used for the arrest of a running crack

# K-R curve testing - N

- ASTM E 561- 10 Standard Test Method for K-R Curve Determination
- Linear elastic based fracture toughness, K versus crack extension,  $\Delta a$
- This work best for high strength sheet material, aircraft structures, etc.
- The K-R curve was one of the original methods, and influenced the non-linear FM methodology

### Latest K-R Curve Standard

 ASTM E561 - 10 Standard Test Method for K-R Curve Determination

# Dynamic fracture toughness, K<sub>Ic</sub>(t) - N

- K<sub>Ic</sub>(t) is used for rapidly loaded testing
- (t) is the loading time to  $K_Q$  in ms
- Test time is usually 1 to 10 ms
- A rapid load or impact machine is needed
- Most analysis like the E 399 K<sub>Ic</sub> but dynamic yield strength,  $\sigma_{yD}$ , is used in the analysis ( $\sigma_{yD}$  equation in E399)

### Rapid Loading Fracture Toughness - N

- K<sub>Ic</sub>(t) could be used for seismic, impact, explosive or attack loading
- In the lower shelf dynamic loading usually reduces fracture toughness
- See example

### Rapid load test result - N



Fig. 9 -Static and dynamic fracture toughness of A533 Gr B Cl 1 pressure vessel steel

### Effect of loading rate







Figure 4.30 Effect of temperature and loading rate on fracture toughness of an A572 steel.

# Crack arrest K<sub>Ia</sub> Testing - N

- K<sub>la</sub> Testing is done by ASTM E 1221
- A crack is started in a weld bead and forced into the test material, where it arrests
- K<sub>la</sub> is determined by the load and crack length at the arrest point
- This is one of the two fracture tests without a fatigue precrack

### **Crack Arrest Standard**

ASTM E1221 - 10 Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, K<sub>la</sub>, of Ferritic Steels

### **Crack Arrest Specimen**





ed



∰ E 1221 – 06

racture Surface of a CCA Specimen Showing Extensive Ligamentation



FIG. A1.9 Fracture Surface of a CCA Specimen with a Slanted and Nearly Straight Crack Front





### Effect of thickness

• Thick specimens or structures are in plane strain and have lower fracture toughness

• Thin specimens or structures are in plane stress and have higher fracture toughness

 Between plane stress and plane strain is a transition in toughness

### A. Effect of Thickness





### **Terminology Standard**

• E 1823 – 11, Standard Terminology relating to Fatigue and Fracture testing

Updated regularly