Fatigue and Fracture of Engineering Materials

GIAN Course Lecture 1 November 7, 2016

Instructor:
John Landes
Retired from
University of Tennessee
Knoxville, TN USA

Course Outline and Schedule Day 1

- November 7, 2016
- Lecture 1: 1400-1500
- Fracture mechanics background and analytical tools
- Lecture 2: 1530-1630
- Workshop 1: Determining fracture mechanics parameters

- •
- •
- •

- November 8, 2016
- Lecture 3: 1400-1500
- Fracture toughness testing
- Lecture 4: 1530-1630
- Workshop 2: Fracture toughness data and properties

- •
- •
- •
- •
- Lecture 20: 1530-1700
- Examination/Assessment/Evaluation

- November 9, 2016
- Lecture 5: 1400-1500
- Fatigue concepts, testing and properties
- Lecture 6: 1530-1630
- Workshop 3: Analysis of fracture and fatigue data

- ullet
- •
- •

- November 10, 2016
- Lecture 7: 1400-1500
- Environmental effects in fracture and fatigue
- Lecture 8: 1530-1630
- Fracture mechanics applications

- November 11, 2016
- Lecture 9: 1400-1500
- Workshop 4: Fracture and fatigue analysis of engineering structures
- Lecture 10: 1530-1630
- Case studies in fracture and fatigue

- November 14, 2016
- Lecture 11: 1400-1500
- Nonlinear fracture mechanics parameters
- Lecture 12: 1530-1630
- Nonlinear fracture and fatigue testing

- November 15, 2016
- Lecture 13: 1400-1500
- Workshop 6: Analyzing nonlinear fracture mechanics test results
- Lecture 14: 1530-1630
- Transition fracture toughness and analysis

- November 16, 2016
- Lecture 15: 1400-1500
- Nonlinear fracture mechanics applications
- Lecture 16: 1530-1630
- Workshop 5: Using nonlinear fracture mechanics applications

- November 17, 2016
- Lecture 17: 1400-1500
- Standard updates, sortware and new trends
- Lecture 18: 1530-1630
- New trends in research

- November 18, 2016
- Lecture 19: 1400-1500
- Workshop 6: Discussion of problems contributed by students
- Lecture 20: 1530-1700
- Examination/Assessment/Evaluation

Practical Fracture Mechanics and Fractography - Nomenclature

(This nomenclature is not unique or used consistently in practice)

a = crack size a₀ = initial crack size af = final crack size a_{cr} = critical crack size $\Delta a = \text{crack extension increment}$ b = width (used by the Stress Analysis Handbook) b, c = material constants (fatigue) b = (W - a) = uncracked ligament B = thickness C = compliance = v/Pda/dN = fatigue crack growth rate E = elastic modulus f(a/W), Y = dimensionless geometric parameter for K solution (given in tables or graphs) F(a/b) = dimensionless geometric parameter for K solution (given in the Stress Analysis of Cracks Handbook) G = strain energy release rate (Griffith theory) In = constant from HRR stress field J_{Ic} = critical value of J integral, initiation fracture toughness Jel = elastic part of J Jpl = plastic part of J K = crack-tip stress intensity factor K_{Ia} = crack arrest fracture toughness K_{Ic} = plane strain fracture toughness (from ASTM E 399, considered to be a materials property) K_{Iscc} = threshold stress intensity factor for stress-corrosion cracking

K_{Ic(t)} = fracture toughness for dynamic loading

```
K<sub>IR</sub> = fracture toughness reference curve (ASME)
K<sub>R</sub> = K<sub>app</sub>/K<sub>Ic</sub> (K ratio used in failure analysis diagram)
Ko = provisional fracture toughness value for Kic test
\Delta K = (K_{max} - K_{min}) = range of the stress intensity factor in fatigue loading
\Delta K_{TH} = threshold value of \Delta K below which there is no da/dN
kt = stress concentration factor
m, C = materials constant from the Paris' Law
n = strain hardening exponent (monotonic stress-strain curve)
n' = strain hardening exponent (cyclic stress-strain curve)
N<sub>f</sub> = number of cycles to failure
P = applied load
Po = provisional load for Ko evaluation in Kic test
P<sub>5</sub> = load at 5% secant in K<sub>Ic</sub> test
Q = calibration factor for K as a function of a/2c shape in surface flaw
Q = secondary stress, residual or thermal (used in CTOD design curve approach )
r = distance from the crack tip to stress measurement point
r*, ry = plastic zone size
rp = ratio of distances in CTOD evaluation
R = stress ratio, \sigma_{min}/\sigma_{max} (used in cyclic loading)
RT_{NDT} = reference temperature for K_{IR} curve (ASME)
S = applied stress amplitude (fatigue)
S = span
S_R = \sigma_{app}/\sigma_{vs} (stress ratio used in failure analysis diagram)
T = surface tension (Griffith theory)
T = tearing Modulus (J-R curves)
T = temperature
T = stress vector in J integral
To = reference temperature used in ASTM E1921 fracture transition master curve
t = thickness (Griffith theory)
```

u = displacement vector in J integral

U = total potential energy

U₀ = potential energy without a crack

Ua = potential energy due to a crack

Ut = surface energy per unit area

v = displacement

v_{LL} = load-line displacement

vel = elastic part of the displacement

vpl = plastic part of the displacement

W = specimen width

W = strain energy density in J integral

Z = distance from crack beginning to displacement measurement point in CTOD evaluation

 δ = crack tip opening displacement, CTOD

 δ_c = CTOD without stable crack growth

 δ_m = CTOD at maximum load

 δ_u = CTOD with some stable crack growth before unstable crack propagation

 $\delta_R = \delta_{upp} / \delta_c$ (CTOD ratio used in failure analysis diagram)

 ε_a = strain amplitude in fatigue

 ε_{ae} = elastic strain amplitude

 ε_{ap} = plastic strain amplitude

 ε_0 = yield strain

v = Poisson's ratio

 σ_a = stress amplitude in fatigue testing = $\Delta \sigma/2$

 $\sigma'_f = \text{constant (fatigue)}$

 σ_{yy} , σ_{xx} , τ_{xy} = stresses

 $\sigma_{\rm Y} = (\sigma_{\rm uts} + \sigma_{\rm vs})/2$

 σ_{ys} , σ_0 = yield strength

 σ_{uts} = ultimate tensile strength

 σ_u = ultimate tensile strength in Goodman equation

 σ_m = mean stress in fatigue loading

 $\sigma_{\rm m}$ = membrane stress (CTOD design approach)

 σ_b = bending stress (CTOD design approach)

 $\Delta \sigma$ = stress range in fatigue loading

 $\boldsymbol{\theta}$ = angle between the crack plane and the point considered

K solutions

1. Load format; compact, etc. Use $f = KB\sqrt{W/P}$ tables

$$K = \frac{Pf}{B\sqrt{W}}$$

Stress format, CCT, SE(T), etc.
 Use graphs of F(a/b)

$$K = \sigma \sqrt{\pi a} F(a/b)$$

- Center Cracked; CCT; F = 1 for an infinite plate
- Single edge notched SE(T); F = 1.122 for a semi-infinite plate

Reference Books

- D. Broek, <u>Elementary Engineering Fracture Mechanics</u>, Fourth Revised Edition, Martinus Nijhoff Publishers, 1987.
- H. L. Ewalds and R. J. H. Wanhill, <u>Fracture Mechanics</u>, Edward Arnold, 1986.
- M. F. Kanninen and C. H. Popelar, <u>Advanced Fracture Mechanics</u>, Oxford University Press, 1985.
- J. M. Barsom and S. T. Rolfe, <u>Fracture and Fatigue Control in Structures</u>, <u>Applications of Fracture Mechanics</u>, Second Edition, Prentice Hall, 1987.
- R. W. Hertzberg, <u>Deformation and Fracture Mechanics of Engineering</u> <u>Materials</u>, Fourth Edition, John Wiley & Sons, 1983.
- J. F. Knott, <u>Fundamentals of Fracture Mechanics</u>, John Wiley & Sons, 1973.
- T. L. Anderson, Fracture Mechanics, Fundamentals and Applications, Second Edition, CRC Press, 1995.
- H. Tada, P. Paris and G. Irwin, The Stress Analysis of Cracks Handbook, Paris Productions, 1985 (new edition due 1998)
- A. Saxena, Nonlinear Fracture Mechanics for Engineers, CRC Press, Boca Raton, FL, 1998.
- N. E. Dowling, Mechanical Behavior of Materials, second edition, Prentice-Hall, 1999

Fracture and Fatigue Journals

- Engineering Fracture Mechanics, Elsevier
- 2. International Journal of Fracture, Kluwer Academic Publishers
- International Journal of Fatigue and Fracture of Engineering Materials and Structures, Blackwell
- 4. International Journal of Fatigue, Elsevier
- Journal of Testing and Evaluation, ASTM

Course Objectives

- 1. Learn the importance of using a fracture mechanics approach
- 2. Understand some basic principles
- 3. Learn basic methods of testing and data analysis
- 4. Solve basic problems like critical defect size and life prediction
- 5. Learn where to get help with fracture problems

Introduction to Fracture Mechanics

- Definition: Technology that deals with the effect of defects on the load bearing capacity of materials and structures.
- Assumptions
 - 1.Defects may be present in materials and structures
 - 2. Approaches to predicting failure that do not consider these defects are not adequate

Fracture Mechanics versus Conventional Approaches

1. Conventional approach

No consideration of the defect in the material

2. Fracture mechanics approach

Defect is considered

Types of Defects

- A. Microstructural
 Dislocations, voids, inclusions, grain boundaries, second phase particles
- B. Macrostructural
 - Notches, discontinuities, material boundaries
 - 2. Sharp cracks

Types of Defects, Cont'd

- Technology is not available to treat each case separately; defects are treated as
 - a) Notches stress riser
 - b) Sharp crack stress singularity (this is a fundamental assumption of fracture mechanics)

Need for Fracture Mechanics

1. Economic

- Cost of failures in the USA 1982 \$132B/yr
- Savings possible -> 50% using new technology

2. Failures

- Historical Molasses tank
- World War II ships
- Modern

Boston Molasses Tank Failure

Barge Failure

Post WW II Failures

- 1. 1950's Comet Aircraft
- 2. 1967 Point Pleasant Bridge, Ohio W. VA
- 3. 1972 IOS Barge
- 4. 1960's Polaris Missiles
- 5. 1960's Submarine pressure vessels
- 6. 1970's F-111 aircraft
- 7. Minneapolis I-35 W bridge

Fatigue Failure of a 737 Airplane

Point Pleasant Bridge Collapse

Bridge similar to Point Pleasant

Bridge after collapse

NASA rocket motor casing failure

George Irwin

Advantages of Fracture Mechanics

- 1. Quantitative analysis
- 2. Allows assessment of:
 - a) Structural life
 - b) Safety factors
 - c) Inspection criteria
- 3. Combines design information
 - a) Defect characterization
 - b) Stresses
 - c) Materials properties