Diffusion Tensor Imaging

Lecture 16 November 18, 2016

Diffusion Tensor Imaging (DTI)

- A method to measure water diffusion using magnetic resonance
- Based on the idea that the diffusion weighted signal that we measure reflects the structure of the tissue from which it is measured
- Used to study white matter tracts both clinically and in research

Tractography

- 3D modeling techniques used to visually represent neural tracts using data collected by diffusion tensor imaging (DTI)
- DTI was the first fiber imaging technique, limited for tractography because it is difficult to detect fiber crossings
- Also called diffusion weighted imaging
- Diffusion spectrum imaging (DSI) is method designed to overcome the limitations of DTI
- DSI measures in many different directions, but it uses a lot more magnetic gradient and acquires data in a different pattern

DTI White Matter Images

History of DTI

- 1990, Michael Moseley reported that water diffusion in white matter is anisotropic
- 1991, Douek et al. first showed that anisotropy could be exploited to map the orientation of white matter tracts
- 1992, first images submitted for patents (UK)
- 1994, Basser et al, diffusion tensor model first used for DTI

Diffusion (in DTI)

- Diffusion is extremely sensitive to differences and changes in tissue microstructure
 - Myelination/Demyelination
 - Axon damage/Loss
 - Inflammation/Edema
 - Necrosis
- A measure of white matter integrity?

Diffusion of Water in Tissues

Diffusion of water molecules follows Brownian motion (random)

• With no constraints, water molecules can diffuse isotropically

 Along axons, water molecules diffuse anisotropically

Water Diffusion in Tissue

A. Isotropic Diffusion

B. Anisotropic Diffusion

Random (stochastic) movement of particles

But in white matter, the direction is constrained leading to anisotropic diffusion

http://pubs.niaaa.nih.gov/publications/arh27-2/146-152.htm

Back to DTI

- In white matter, diffusion along the transverse axis is much slower than that along the fibers
- Diffusion weighted MR is designed to give more weight to diffusion in some directions than in others
- Acquire a collection of 7+ images with different direction encodings to compute the diffusion tensor in each voxel

The Diffusion Tensor

http://www.slideshare.net/AzizPoonawalla/dti-lecture-100710

DTI Principles (continued)

Raw Diffusion Weighted Images

White matter tracts parallel to the gradient direction appear dark in the image for that direction

Neurosurg Clin N Am. 2011 Apr; 22(2): 185–viii. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163395/ Navigator-corrected, multi-shot, spin-echo echo-planar pulse sequence with diffusionsensitizing gradients of amplitude (G), duration (δ), and separation (Δ).

Chad A. Holder et al. AJNR Am J Neuroradiol 2000;21:1799-1806

Compute the Eigenvalues and Eigenvectors

• Once you have the images that constitute the diffusion tensor, can find the eigenvalues and eigenvectors $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge 0$

 Need at least 7 images (6 diffusion weighted images + one baseline image) are needed to compute the 3x3 matrix

Use Eigenvalues to Compute Different Measures Which Give Information about the Tissues

Diffusion Anisotropy Measures

$$\begin{split} \lambda_{1} &= \text{longitudinal (axial) diffusivity(AD)} \\ &(\lambda_{2} + \lambda_{3})/2 = \text{radial diffusivity (RD)} \\ &(\lambda_{1} + \lambda_{2} + \lambda_{3})/3 = \text{mean diffusivity (MD)} \\ &\sqrt{\frac{1}{2}} \frac{\sqrt{(\lambda_{1} - \lambda_{2})^{2} + (\lambda_{1} - \lambda_{3})^{2} + (\lambda_{2} - \lambda_{3})^{2}}}{\sqrt{(\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2})}} = \text{fractional} \\ &\text{anisotropy (FA)} \end{split}$$

- Axial diffusivity (parallel diffusivity) is equal to the largest eigenvalue
- Radial diffusivity is perpendicular to axial diffusivity

Do These Measures Have Anatomical Significance?

- FA = measure of microstructural integrity
- MD = inverse measure of the membrane density
- AD = variable with white matter changes and pathology
- RD = increases in white matter with demyelination

http://www.diffusion-imaging.com/2013/01/relation-between-neural-microstructure.html

Analyzing the Data

- Several software packages exist for DTI
 - FSL: Tract based spatial statistics (TBSS)
 - Preprocessing, analysis, statistical implementation
 - DTI Studio
 - Brain Voyager
 - MrDiffusion
 - ExploreDTI
 - http://www.diffusion-imaging.com/2013/03/listof-software-tools-for-dti.html

Eigenvalues and Eigenvectors

 λ_1

Compute FA and MD Images

FA Image

MD Image

FA and MD Image Uses

• Compute FA and MD for each subject

 Normalize these and combine groups of subjects

• Compare these measures across groups

Tractography

Apply a technique to follow and trace white matter tracks

https://static.healthcare.siemens.com/siemens_hwemhwem_ssxa_websites-contextroot/wcm/idc/groups/public/@global/@imaging/@mri/document s/image/mdaw/mjew/~edisp/mri-syngo-resolve-dti-tractography-00200930/~renditions/mri-syngo-resolve-dti-tractography-00200930~8.jpg

Compare White Matter Tracks in Injury

http://braininjuryhelp.com/dti-diffusion-tensor-imaging-mri/