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OVERVIEW  

1. Overview/History of fMRI 

2. How it Works /Basic Principles  

  - The Blood Oxygen-Level Dependent Signal (BOLD) 

  - How the BOLD signal is measured 

1. How to collect the data/ Design of experiments 

2. How to analyze the data 

3. Group analysis 

4. Limitations and problems  

 



EXAMPLE OF FMRI DATA ANALYSIS 
STEPS 

3 

Process data to remove noise 

Statistical analysis of individual subjects 
  (general linear model, t-maps, F-maps, 

time series analysis) 

Normalize brains into a common space 

Create group maps 



WHAT CONSTITUTES ACTIVATION 

• Statistics help us to answer the following: 

• How do we determine whether an area of the brain is 
activated by our task? 

• How confident are we that the areas we find are activated by 
our task? 

• Are the results in my group of subjects applicable to the 
wider population? 

• Are the differences between groups of subjects significant? 

 



“BRAIN ACTIVATION” 

• We fit the general linear 
model (GLM) to each voxel 
in the brain 

• Use the estimated model 
parameter to test for 
“activation” 

• “Activation” means the 
voxel exceeded a certain 
threshold 



CORRELATION/REGRESSION 

• Use a representative waveform representing the on-off 

periodicity of the design convolved with HRF and correlate that 

with MRI signal change across each of the scans 



GENERAL LINEAR MODEL & FMRI 

How does GLM apply to fMRI experiments? 

 

Y        =       X       .   β      +     ε 

 

Observed  = Predictors * Parameters + Error 

 

BOLD  = Design Matrix * Betas + Error 

 

 

 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



SIMPLE FMRI GLM 

• x(t) is the block design convolved with a model of the HRF 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



GLM - ADDING REGRESSORS 

• x2(t) adds Temporal Derivatives - allows for shifts in transition 

points of block design 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



Observed data Preprocessing ... 

Intensity 

T
im

e
 

Y 

Y =    X . β  + ε 

 Y is a matrix of 
BOLD signals: 

 

 Each column 
represents a single 
voxel sampled at 
successive time 
points. 

 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



UNIVARIATE ANALYSIS 

• Each voxel 
considered as 
independent 
observation 

 

• Analysis of individual 
voxels over time, not 
groups over space 

 

• SPM would still work 
on an Amoeba! 

 

 

Y =    X . β  + ε 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



CONTINUOUS PREDICTORS 

•  Scan no Voxel 1 Task
difficulty

1 57.84 5

2 57.58 4

3 57.14 4

4 55.15 2

5 55.90 3

6 55.67 1

7 58.14 6

8 55.82 3

9 55.10 1

10 58.65 6

11 56.89 5

12 55.69 2

X can contain values quantifying experimental variable  

Y  X   

Y =    X . β  + ε 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



 Parameters & error 

this line is a 
'model' of the 
data 

slope β = 0.23 

intercept = 54.5  

• β: slope of line 
relating X to Y 

• ‘how much of X is 
needed to 
approximate Y?’ 

• the best estimate 
of β  minimizes ε: 
deviations from 
line 

Y =    X . β  + ε 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



DESIGN MATRIX 

•  

Matrix represents values of X 

Different columns = different predictors 

Y    X1      X2  
Scan no Voxel 1 Task

difficulty

Constant

variable

1 57.84 5 1

2 57.58 4 1

3 57.14 4 1

4 55.15 2 1

5 55.90 3 1

6 55.67 1 1

7 58.14 6 1

8 55.82 3 1

9 55.10 1 1

10 58.65 6 1

11 56.89 5 1

12 55.69 2 1

X1         X2 

Y =    X . β  + ε 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



 Matrix formulation 

(t)  Y    X1       X2    

time (t) Voxel 1 Task

difficulty

Constant

variable

1 57.84 5 1

2 57.58 4 1

3 57.14 4 1

4 55.15 2 1

5 55.90 3 1

6 55.67 1 1

7 58.14 6 1

8 55.82 3 1

9 55.10 1 1

10 58.65 6 1

11 56.89 5 1

12 55.69 2 1

Y1 

Y2 

YN 

β1 

β2 

βL 

ε(t1) 

ε(t2) 

ε(tN) 

+ = 

 X
1

(t1)  X
2

(t1) ... XL
(t1)  

X1
(t2) X2

(t2) ... XL
(tS) 

X1
(tN) X2

(tN) ... XL
(tN) 

Y1 = (5 * β1) + (1 * β2)  
^ 

Y2 = (4 * β1) + (1 * β2)  

... 

^ ^ 

YN = (X1
(tN) * β1) + (X2

(tN) * β2)  
^ 

X1      X2 

Y =    X . β  + ε 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



 Parameter estimation and stats 

• Find betas (by least squares estimation) 

•Y= βX -> “B = Y / X”  (B= estimated β) 

•Matlab magic:   
>> B = inv(X) * Y  

•Now find error term: 

•e = Y – (X * B ) 

• ...and use these results for statistics: 

• t = betas / standard error 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



 Covariates vs. conditions 

• Covariates:  

• parametric modulation of 

independent variable  

• e.g. task-difficulty 1 to 6  

-regression: beta = slope 

 

• Conditions: 

• specify time of onset and 

duration 

• e.g. integers 0 or 1: 'off' or 'on' 

-> ANOVA: beta = effect mean 

 

on    off 

 

 

off    on 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



DESIGN MATRIX WITH MOTION AS 
REGRESSORS 

• Example includes 
transformation 
parameters from motion 
correction as nuisance 
regressors 

 
• Useful for removing noise 

due to head motion 

• However, if motion is 
correlated with task then 
this will reduce statistical 
significance 

motion 
parameters 



MODELLING HEMODYNAMICS 

• Brain does not just 
switch on and off! 

• Reshape (convolve) 

regressors to 

resemble HRF 

 

HRF basic 
function 

Original 

 

HRF 

Convolved 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



SUMMARY: REVERSE COOKERY 

• You start with the finished 
product and want to know how 
it was made 

• You specify which 
ingredients to add (design 
matrix variables) 

• For each ingredient, GLM 
finds the quantities (betas) 
that produce the best 
reproduction (model)  

• Now you can compare 
your recipe with others 
(null hypothesis) to see if 
they differ! (statistical 
tests) 

Elliot Freeman, ICN, “Idiot’s guide to the general linear model & fMRI. fMRI model, 

Linear Time Series, Design Matrices, Parameter estimation, *&%@!”  



WHAT CONSTITUTES ACTIVATION 

• Statistics help us to answer the following: 

• How do we determine whether an area of the brain is 
activated by our task? 

• How confident are we that the areas we find are activated by 
our task? 

• Are the results in my group of subjects applicable to the 
wider population? 

• Are the differences between groups of subjects significant? 

 
fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



FORMAL STATEMENT OF A HYPOTHESIS 

• Research question is framed as a hypothesis 

• Null hypothesis assumes that the hypothesis is not true 

• Statistics aim to disprove the null hypothesis and thus accept the research 

hypothesis 

• In fMRI we are testing difference in BOLD signal between two conditions 
 

  H1: Condition1 ≠ Condition2 

  H0: Condition1 = Condition2 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



FMRI EXAMPLE 

• Hypothesis: “Moving the thumb will cause an increase in 

neuronal activity which we detect with BOLD signal 

changes”   

• Null Hypothesis: “Moving the thumb will NOT cause an 

increase in neuronal activity which we detect with BOLD 

signal changes”  

• Experimental condition – moving thumb 

• Control condition – thumb not moving 

• Outcome measure – MRI signal changes 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



HYPOTHESIS TESTING 
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fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 
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fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 
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Molecular Imaging Georgetown University Medical Center 
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fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



HYPOTHESIS TESTING 

• Two factors describe how much effect the experimental 

condition had: 

 

• Difference between the mean intensities of each condition 

 

• Degree of overlap in intensities  



HYPOTHESIS TESTING 

• Experimental condition has an effect 
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• Experimental condition has no effect 
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fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



THE T-TEST 

• Formally incorporates our intuitive sense of when there is an 
effect 

• Based on a measure of the distance between the two means 
and the spread of each condition 

 t  =  (m1 – m2) 

  √(1
2 + 2

2) 

• We use our Beta values in these statistical measures! 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



T-STATISTICS AND P-VALUES 

• The p-value for a t-statistic gives the probability 

that the difference between the experimental and 

control conditions arose by chance 

• Typically p < 0.05 is considered minimum cut-

off for significance (i.e. alpha is set at p < 0.05) 

• Statistics tables list the p-values for each t-

statistic based on the df, degrees of freedom, 

(single subject analysis df=total number of scans 

minus 1) 
fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



ONE-TAILED TEST 

Yellow area under the curve is about 0.025 (for t=2). 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



TWO-TAILED TEST 

Yellow area under the curve is about 0.05 (for t=2). 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



T-STATISTICS AND P-VALUES 

Ex.  

 Suppose we find a voxel in which the t-statistic is 3.3 
and there were 20 scans at rest and 20 scans while 
moving thumb. 

 

 The probability that the difference in the MRI signal in 
this voxel is not due to the movement of the thumb is 
0.002 two-tail or 0.001 one-tail. 

 

fMRI Statistics Part I, John VanMeter, Ph.D., Center for Functional and 

Molecular Imaging Georgetown University Medical Center 



EXAMPLES OF THE AFFECT OF VARIANCE 



T-STATISTICS, P-VALUES, & Z-SCORES 

• Unlike t-statistics, the p-value for Z-scores, which are 

based on the normal distribution, does not change 

depending on the number of scans 

• In functional imaging it is common to convert the t-

statistic to a Z-score since it is easier to compare 

across studies (not dependent on degrees of freedom) 



PROBLEMS WITH THE T-TEST 

• Systematic differences such as artifacts can create 
apparent significant differences where none exists 

• Disregards any temporal characteristics of the data 
since only means are compared 

• Assumption of t-test is that the data for both 
conditions is normally distributed - usually though 
not always true 

• Smoothing helps make data normally distributed 

 



MAKING ERRORS 

• Two types of errors: 

• Type 1:  Activation is true, but 

we mistakenly reject it (False 

positive) 

 

• Type II:  Activation is false, but 

we fail to reject it (False 

negative) 



MULTIPLE COMPARISON PROBLEM 

• If more than one hypothesis test is performed, chance of making 
errors is even greater 

• The more tests performed, the greater the likelihood of errors 

• Say we have 32 slices, 64x64 voxels in xy plane 

• If we test 64x64x32= 131,072 comparison tests!!! 

• Which voxels are actually significant? 

• Want to balance sensitivity (true positive rate) and specificity (true 
negative rate) 



MEASURE OF FALSE POSITIVES  

• There are ways to quantify the amount of false positives  

 

• Family Wise Error Rate (FWER) – control the probability of false positives 

 

• False Discovery Rate (FDR) – control the proportion of false positives 

among rejected tests 



FAMILY-WISE ERROR RATE 

• Control the probably of making one or more Type I errors in a family 

of tests  

• Basically adjusting p-values for the number of hypothesis tests 

performed 

• FWER controlling methods include: 

• Bonferroni correction 

• Random Field Theory 

• Permutation tests 



How to avoid false associations? 

Applying  m  independent statistical tests with significance level a, a 

probability of at least one false association should be 

1-(1-a)m  < 0.05 

Carlo Bonferroni (1935): 
When applying m  independent statistical test, only significant results 

are results with 



BONFERRONI CORRECTION 

• Very simple method for ensuring that the overall Type I error rate of α is maintained when 
performing m independent hypothesis tests  

 

• Rejects any hypothesis with p-value ≤ α/m:  

 

• For example, if we want to have an experiment wide Type I error rate of 0.05 when we 
perform 10,000 hypothesis tests, we’d need a p-value of 0.05/10000 = 5 x 10-6 to 
declare significance 

 

• Problem: Extremely conservative – often fail to find results 



A B C 

t = 2.10,   p < 0.05 
(uncorrected) 

t = 3.60,   p < 0.001 
(uncorrected) 

t = 7.15,   p < 0.05,         
Bonferroni Corrected 



FALSE DISCOVERY RATE  (BENJAMINI, 
HOCHBERG, 1995) 

•    Order tests according to p-value :  

•                             p1 < p2 < … < pm. 
 

•    For  FDR control on α level  (e.g. 0.05), 

 we find 

 

•     Differences are assumed to be significant for j 

= 1, …, j*. 

•     For   j > j*  differences are assumed not to be 

significant 









 
m

j
pjj j:max*



Statistics Part II John VanMeter, Ph.D. Center for Functional and Molecular Imaging Georgetown University Medical Center. 



ANALYSIS OUTPUTS 

• Output from analysis software will typically include some visual 

representation of the results and tables of areas of activation 

• Variety of tools available to interrogate and visualize results 



LOCAL MAXIMA REPORTING 

• Utility that generates a list of coordinates that 
correspond to the highest values in the statistical map 
grouped by ‘cluster’ 

• Clusters are defined by spatially contiguous set of 
voxels above a statistical threshold (p-value) 

• SPM reports the maxima within each cluster and up to 
2 sub-maxima at least 8 mm from the other maxima 



VOXEL SURFING/PLOTTING 

• Used to examine how well the changes in the MRI 

signal follow the on-off characteristics of the task 



BASIC DISPLAY OF RESULTS 

• Simply display all of the t-
statistics or other statistic in 
gray scale or with color 
coding 

• Useful for getting an overall 
sense of the results 

• Can see the data in its most 
basic form 

• Use threshold of 0.1 or 
higher in SPM to get similar 
type of display 



GLASS BRAIN (SPM) 

• Glass brain is a maximum 

intensity projection (MIP) 

generated for all three 

orthogonal planes 

• Quick way to see what is 

activated when there are only 

a few areas 



FUSION OF FUNCTIONAL RESULTS AND 
ANATOMICAL IMAGE 

• Use co-register to overlay 

onto a subject’s own 

anatomical scan 

• SPM has option to overlay 

onto standard brain in 

MNI space 



WHAT DO WE DO WITH THIS 
“ACTIVATION INFORMATION”? 

• Whole brain analysis  

• Explore areas throughout                                                 the brain 

that are active 

• Compare subjects or groups 

 

• Region of interest (ROI) analysis 

• Explore specific areas of interest in the brain  

• Percent activation in the area - 

 (number of active voxels/total number of voxels) 

• Explore “level of activation” as a function of another variable 

(example, IQ) 

 

55 



56 

Region of Interest Analysis 

Map of Brodmann’s Areas 



EXAMPLE OF FMRI DATA ANALYSIS 
STEPS 

57 

Process data to remove noise 

Statistical analysis of individual subjects 
  (general linear model, t-maps, F-maps, 

time series analysis) 

Normalize brains into a common space 

Create group maps 



58 

PROBLEMS OF GROUP MAPS 
  

 

 1. Limited number of subjects 
 

 

 2. All brains must be “warped” into a normalized 
space 

 

 

 3. Need a method for “pooling” statistical data 
 

 

 4. Levels of activation vary across subjects   



FMRI GROUP ANALYSIS 

•  Can look at activation for a single subject  
 

•  Can compare between 2 subjects 
 
 
 
 
 
 
 

• What if we want to compare between 2 groups 
of subjects?  
 

• Need more subjects for statistical power 
 

 

59 



BRAIN NORMALIZATION 

• Warp all brains into a “normalized” space by lining 

up brain landmarks 

 

• Talairach and Tournoux Atlas, Montreal 

Neurological Institute (MNI) template  

 

• Although this is a standard procedure in fMRI group 

analysis, it introduces spatial smoothing and other 

errors 
60 



“TALAIRACHING” OF BRAINS 

61 

BEFORE AFTER 
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EXAMPLE OF VARIATIONS IN 
ACTIVATION 

Same Task  
Different Subjects 

Same Subject 
Same Task 

Different Years 



HOW DO WE COMBINE STATISTICAL 
INFORMATION? 

• Individual subject results are already based on statistical 

processing 

• Combining Tests (T values, P values)  

• Fisher’s Method (1950)  

• Tippett’s Method (1931)  

• The Stouffer Method (1949)  

• Averaging T-maps  

• Worsley and Friston (2000) 

• Combined estimation or “meta-analysis” 

• Fixed effects and random effects models 

 
   Lazar et al. (2001) “Combining Brains: A Survey of Methods for Statistical Pooling of Information” NeuroImage, 

16: 538-550.  

63 
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COMBINING METHODS 

Fisher’s  Method  
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WHICH METHODS ARE “BEST”? 

• For robust results without excessive information 

smoothing – 

 

  - Fixed or Random effects 

 - The Stouffer Method 

 - Fisher’s Method 

 

• How sensitive are these to the effects of individual 

subjects? 
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SENSITIVITY ASSESSMENT OF GROUP 
MAPS 

• 4 combining methods, 11 subjects 
 

• Used “delete one subject diagnostics” (jack-

knifing) to create “leave one out” maps 
 

• Recomputed group maps 
 

• Examined changes in the resulting maps for 

each method as each subject was left out  
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DISPARITY MEASURES FOR “LEAVE ONE OUT” 
MAPS 

  

 Using a standard threshold, compared each “leave one 

out” map to the complete group map (CGM), examining: 
 
 

• Enhancing voxels –  # voxels added to CGM 

 

• Diminishing voxels - # voxels removed from CGM 

 

• Relative effect – (# enhancing voxels + # diminishing voxels) /            

                # voxels in CGM 

 

• Percent overlap – # voxels in the subject’s individual t-map   

       also present in CGM  



68 

Difference Maps Overlap Maps 

Enhancing 

Diminishing 

Active in CGM 

Overlapping 
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DISPARITY TABLES 

Results from the Stouffer Method 
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Fisher 

 

 

 

 

Random Effects 
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RESULTS AND CONCLUSIONS 

• Fisher’s Method –   exploratory 

studies 

 

• The Stouffer method/ Averaging of 

T-maps – general use 

 

• Random effects –  large subject 

groups 

Most 

sensitive 

 

 

 

 

 

 

 

Least 

sensitive 

 

McNamee and Lazar (2004) “Assessing the Sensitivity of fMRI Group Maps” NeuroImage, 22: 920-931. 


