# SECTURE 10: MODELING THE FMRI DATA AT THE FIRST LEVEL

NOVEMBER 15, 2016

## **OVERVIEW**

1. Overview/History of fMRI

- 2. How it Works / Basic Principles
  - The Blood Oxygen-Level Dependent Signal (BOLD)
  - How the BOLD signal is measured
- 1. How to collect the data/ Design of experiments
- 2. How to analyze the data
- 3. Group analysis
- 4. Limitations and problems

#### EXAMPLE OF FMRI DATA ANALYSIS STEPS

Process data to remove noise

Normalize brains into a common space

Statistical analysis of individual subjects (general linear model, t-maps, F-maps, time series analysis)

Create group maps

3

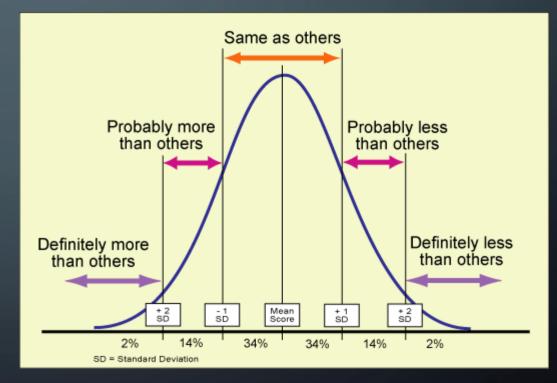
### WHAT CONSTITUTES ACTIVATION

• Statistics help us to answer the following:

- How do we determine whether an area of the brain is activated by our task?
- How confident are we that the areas we find are activated by our task?
- Are the results in my group of subjects applicable to the wider population?
- Are the differences between groups of subjects significant?

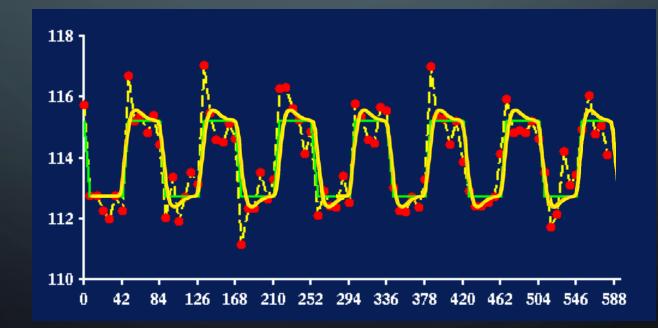
### "BRAIN ACTIVATION"

- We fit the general linear model (GLM) to each voxel in the brain
- Use the estimated model parameter to test for "activation"
- "Activation" means the voxel exceeded a certain threshold



# CORRELATION/REGRESSION

 Use a representative waveform representing the on-off periodicity of the design convolved with HRF and correlate that with MRI signal change across each of the scans



#### GENERAL LINEAR MODEL & FMRI

ß

#### How does GLM apply to fMRI experiments?

X

Y

#### **Observed** = **Predictors** \* **Parameters** + **Error**

#### BOLD = Design Matrix \* Betas + Error

Elliot Freeman, ICN, "Idiot's guide to the general linear model & fMRI. fMRI model, Linear Time Series, Design Matrices, Parameter estimation, \*&%@!"

E

### SIMPLE FMRI GLM

• x(t) is the block design convolved with a model of the HRF

 $y(t) = \beta x(t) + \varepsilon(t)$ 

#### GLM – ADDING REGRESSORS

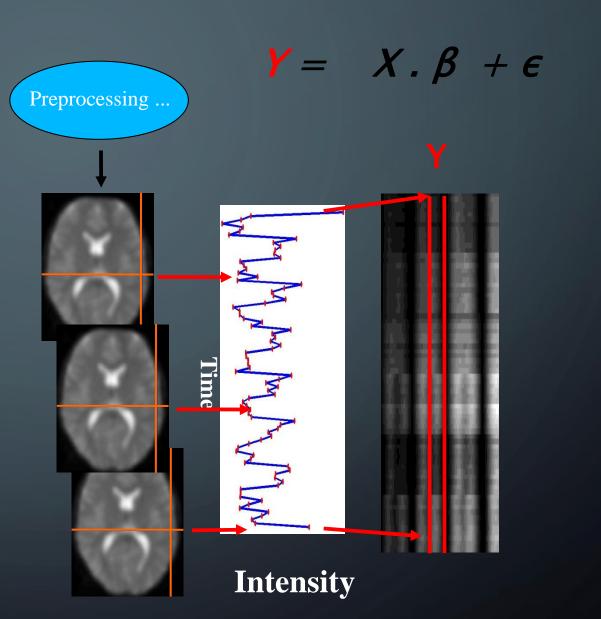
 x<sub>2</sub>(t) adds Temporal Derivatives – allows for shifts in transition points of block design

 $y(t) = \beta_1 x_1(t) + \beta_2 x_2(t) + \varepsilon(t)$ 

#### **Observed** data

• Y is a matrix of BOLD signals:

 Each column represents a single voxel sampled at successive time points.



# UNIVARIATE ANALYSIS

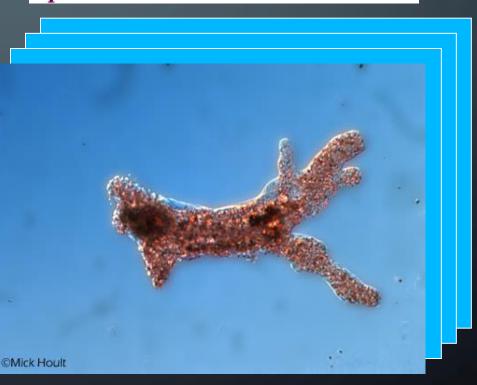
 Each voxel considered as independent observation

 Analysis of individual voxels over time, not groups over space

• SPM would still work on an Amoeba!

m m m m

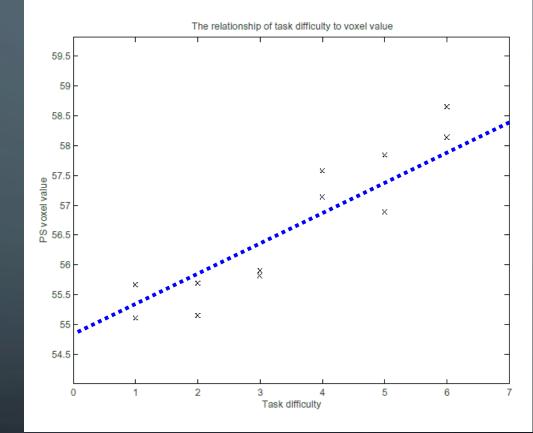
 $Y = X \cdot \beta + \epsilon$ 



 $Y = X \cdot \beta + \epsilon$ 

#### CONTINUOUS PREDICTORS

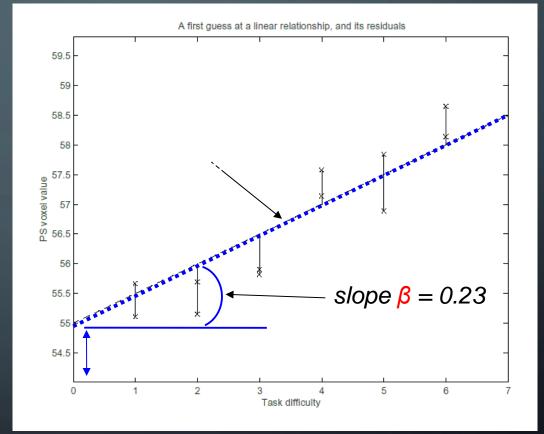
|         | Y       | X                  |
|---------|---------|--------------------|
| Scan no | Voxel 1 | Task<br>difficulty |
| 1       | 57.84   | 5                  |
| 2       | 57.58   | 4                  |
| 3       | 57.14   | 4                  |
| 4       | 55.15   | 2                  |
| 5       | 55.90   | 3                  |
| 6       | 55.67   | 1                  |
| 7       | 58.14   | 6                  |
| 8       | 55.82   | 3                  |
| 9       | 55.10   | 1                  |
| 10      | 58.65   | 6                  |
| 11      | 56.89   | 5                  |
| 12      | 55.69   | 2                  |



X can contain values quantifying experimental variable

# Parameters & error $Y = X \cdot \beta + \epsilon$

- β: slope of line relating X to Y
  - 'how much of X is needed to approximate Y?'
  - the best estimate of β minimizes ε: deviations from line

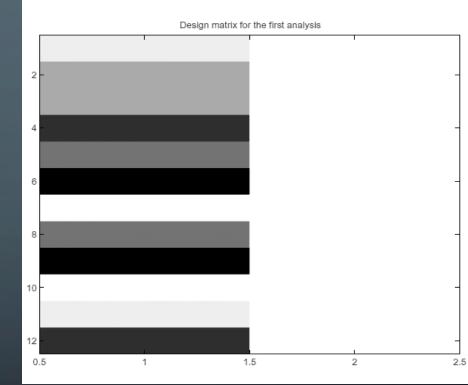


#### **DESIGN MATRIX**

 $\mathbf{X^{1}}$ 

| Scan no | Voxel 1 | Task<br>difficulty | Constant<br>variable |
|---------|---------|--------------------|----------------------|
| 1       | 57.84   | 5                  | 1                    |
| 2       | 57.58   | 4                  | 1                    |
| 3       | 57.14   | 4                  | 1                    |
| 4       | 55.15   | 2                  | 1                    |
| 5       | 55.90   | 3                  | 1                    |
| 6       | 55.67   | 1                  | 1                    |
| 7       | 58.14   | 6                  | 1                    |
| 8       | 55.82   | 3                  | 1                    |
| 9       | 55.10   | 1                  | 1                    |
| 10      | 58.65   | 6                  | 1                    |
| 11      | 56.89   | 5                  | 1                    |
| 12      | 55.69   | 2                  | 1                    |

 $\mathbf{X}^{1}$ 



Matrix represents values of X Different columns = different predictors

 $\mathbf{X}^2$ 

Elliot Freeman, ICN, "Idiot's guide to the general linear model & fMRI. fMRI model, Linear Time Series, Design Matrices, Parameter estimation, \*&%@!"

 $\mathbf{X}^2$ 



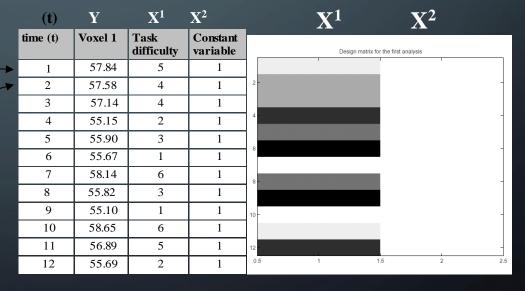
#### **Matrix formulation**

$$\begin{pmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \\ \mathbf{Y}_N \end{pmatrix} = \begin{pmatrix} X^l_{(t1)} & X^2_{(t1)} \dots & X^L_{(t1)} \\ X^l_{(t2)} & X^2_{(t2)} \dots & X^L_{(tS)} \\ X^l_{(tN)} & X^2_{(tN)} \dots & X^L_{(tN)} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_L \end{pmatrix} + \begin{pmatrix} \varepsilon_{(t1)} \\ \varepsilon_{(t2)} \\ \varepsilon_{(tN)} \end{pmatrix}$$

$$\hat{Y}_1 = (5 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) + (1 * \beta_2) - \hat{Y}_2 = (4 * \beta_1) + (1 * \beta_2) + (1 *$$

• • •

$$\hat{\mathbf{Y}}_{N} = (X^{I}_{(tN)} * \beta_{1}) + (X^{2}_{(tN)} * \beta_{2})$$



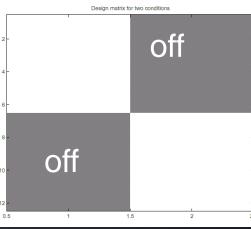
**Parameter estimation and stats** 

• Find betas (by least squares estimation) •  $Y = \beta X - \beta '' B = Y / X''$  (B= estimated  $\beta$ ) • Matlab magic: >> B = inv(X) \* Y• Now find error term: • e = Y - (X \* B)• ... and use these results for statistics: • *t* = *betas* / *standard error* 

#### **Covariates vs. conditions**

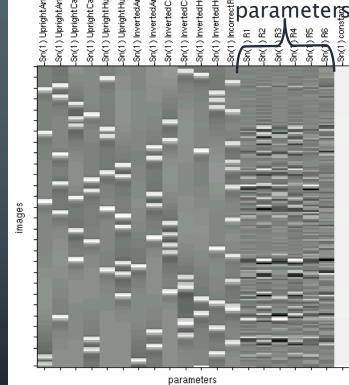
- Covariates:
  - parametric modulation of independent variable
    e.g. task-difficulty 1 to 6 -regression: beta = slope
- Conditions:
  - specify time of onset and duration
  - e.g. integers 0 or 1: 'off' or 'on'
    -> ANOVA: beta = effect mean





# DESIGN MATRIX WITH MOTION AS REGRESSORS

- Example includes transformation parameters from motion correction as nuisance regressors
  - Useful for removing noise due to head motion
  - However, if motion is correlated with task then this will reduce statistical significance



รี้เลี้เรี้เอ็ล) analysis: Design

Emotion

/AS008/Anime2/swavol-00004.imd /AS008/Anime2/swavol-00010.img /AS008/Anime2/swavol-00016.img /AS008/Anime2/swavol-00022.img /AS008/Anime2/swavol-00028.imd /AS008/Anime2/swavol-00034.imd /AS008/Anime2/swavol-00040.imd /AS008/Anime2/swayol-00046.img /AS008/Anime2/swavol-00052.img /AS008/Anime2/swavol-00058.imd /AS008/Anime2/swavol-00064.imd /AS008/Anime2/swayol-00070.imd /AS008/Anime2/swavol-00076.imd /AS008/Anime2/swavol-00082.img /AS008/Anime2/swavol-00088.imd /AS008/Anime2/swavol-00094.img /AS008/Anime2/swavol-00100.img /AS008/Anime2/swavol-00106.img /AS008/Anime2/swavol-00112.img /AS008/Anime2/swavol-00118.img /AS008/Anime2/swavol-00124.img /AS008/Anime2/swavol-00130.imd /AS008/Anime2/swavol-00136.img /AS008/Anime2/swavol-00142.img /AS008/Anime2/swayol-00148.img /AS008/Anime2/swavol-00154.img /AS008/Anime2/swavol-00160.img AS008/Anime2/swavol-00170.img

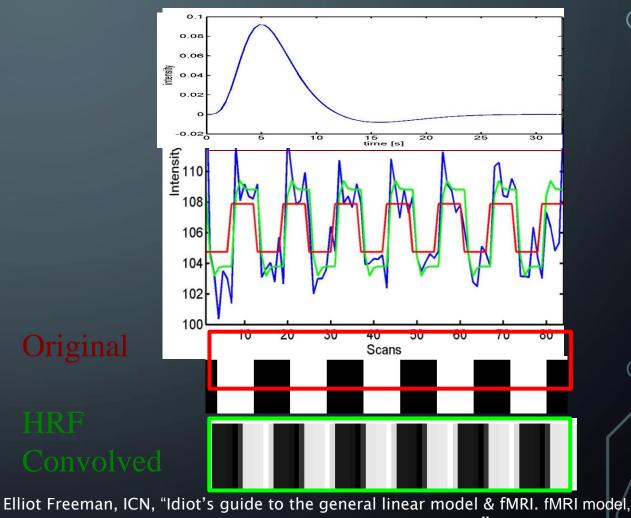
 $(gray \rightarrow \beta not uniquely specified)$ 

parameter estimability

### MODELLING HEMODYNAMICS

HRF basic function

- Brain does not just switch on and off!
- Reshape (convolve) regressors to resemble HRF



Linear Time Series, Design Matrices, Parameter estimation, \*&%@!"

# SUMMARY: REVERSE COOKERY

- You start with the finished product and want to know how it was made
  - You specify which *ingredients* to add (*design matrix variables*)
  - For each ingredient, GLM finds the *quantities (betas)* that produce the best reproduction (model)
  - Now you can compare your recipe with others (null hypothesis) to see if they differ! (statistical tests)



Elliot Freeman, ICN, "Idiot's guide to the general linear model & fMRI. fMRI model, Linear Time Series, Design Matrices, Parameter estimation, \*&%@!"

### WHAT CONSTITUTES ACTIVATION

• Statistics help us to answer the following:

- How do we determine whether an area of the brain is activated by our task?
- How confident are we that the areas we find are activated by our task?
- Are the results in my group of subjects applicable to the wider population?
- Are the differences between groups of subjects significant?

## FORMAL STATEMENT OF A HYPOTHESIS

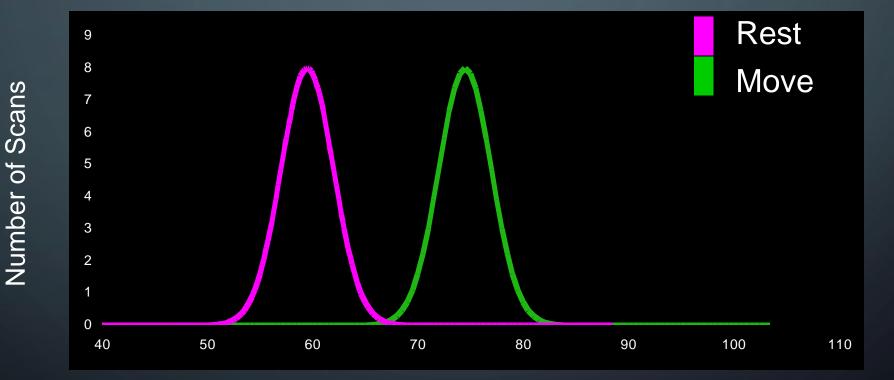
- Research question is framed as a hypothesis
- Null hypothesis assumes that the hypothesis is not true
- Statistics aim to disprove the null hypothesis and thus accept the research hypothesis
- In fMRI we are testing difference in BOLD signal between two conditions

 $H_1$ : Condition<sub>1</sub>  $\neq$  Condition<sub>2</sub>  $H_0$ : Condition<sub>1</sub> = Condition<sub>2</sub>

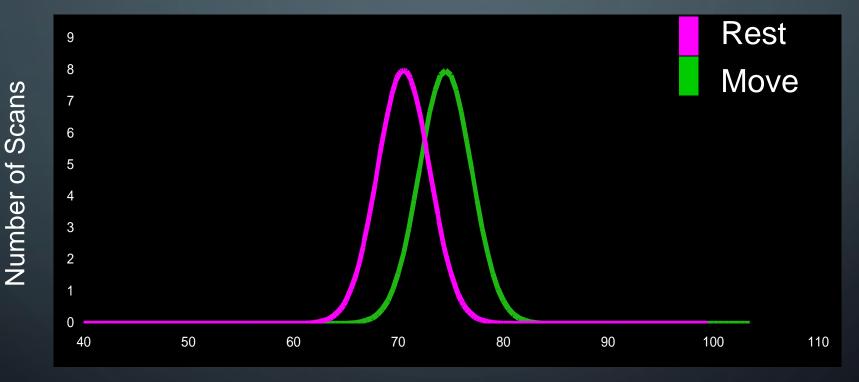
### FMRI EXAMPLE

- Hypothesis: "Moving the thumb will cause an increase in neuronal activity which we detect with BOLD signal changes"
- Null Hypothesis: "Moving the thumb will *NOT* cause an increase in neuronal activity which we detect with BOLD signal changes"
  - Experimental condition moving thumb
  - Control condition thumb not moving
  - Outcome measure MRI signal changes

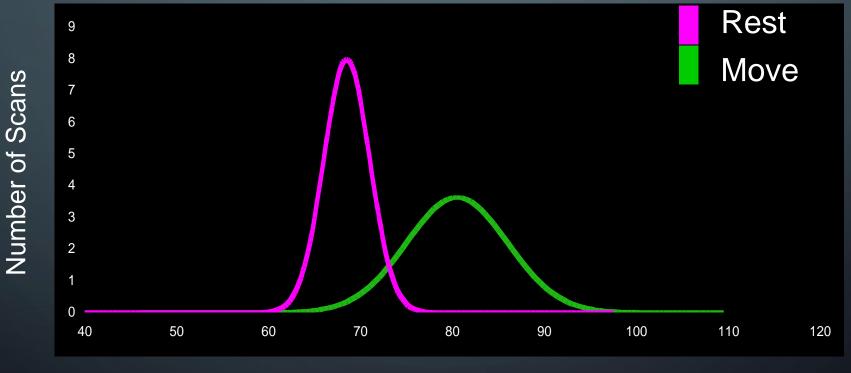




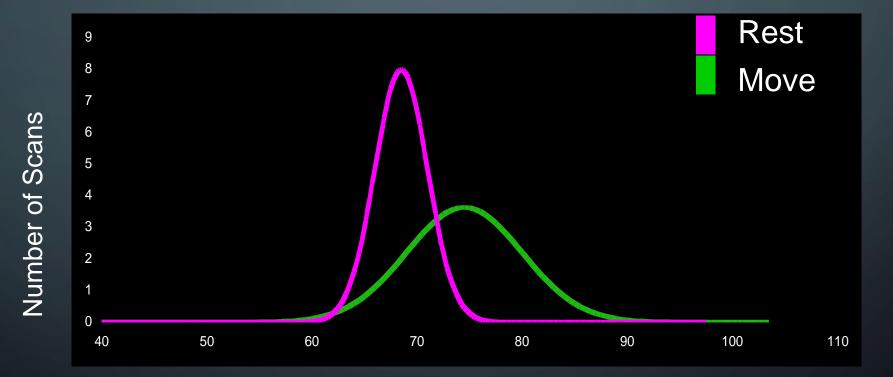












### HYPOTHESIS TESTING

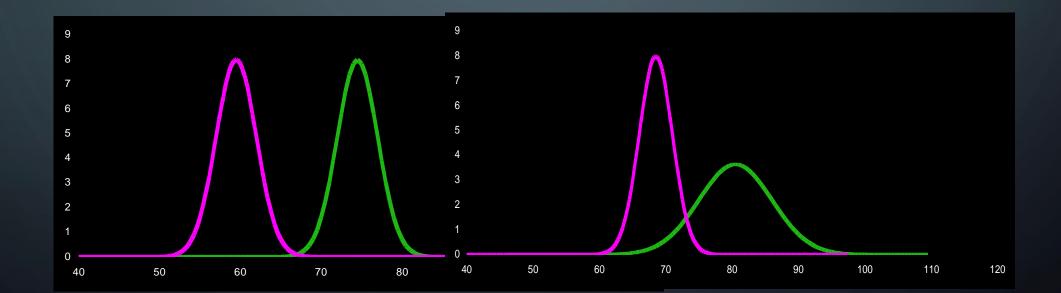
• Two factors describe how much effect the experimental condition had:

• Difference between the mean intensities of each condition

• Degree of overlap in intensities

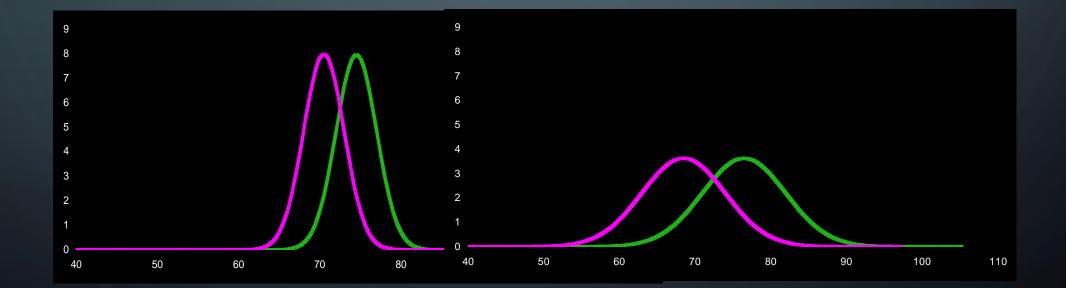
### HYPOTHESIS TESTING

#### • Experimental condition has an effect



### HYPOTHESIS TESTING

#### • Experimental condition has *no* effect



### THE T-TEST

- Formally incorporates our intuitive sense of when there is an effect
- Based on a measure of the distance between the two means and the spread of each condition

$$= (m_1 - m_2)$$

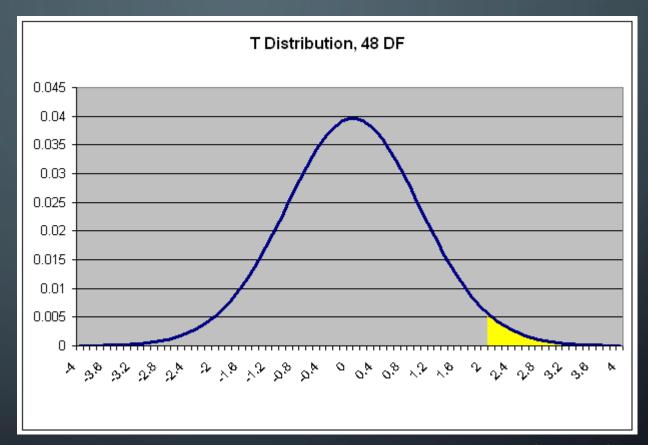
$$\sqrt{(\sigma_1^2 + \sigma_2^2)}$$

• We use our Beta values in these statistical measures!

#### T-STATISTICS AND P-VALUES

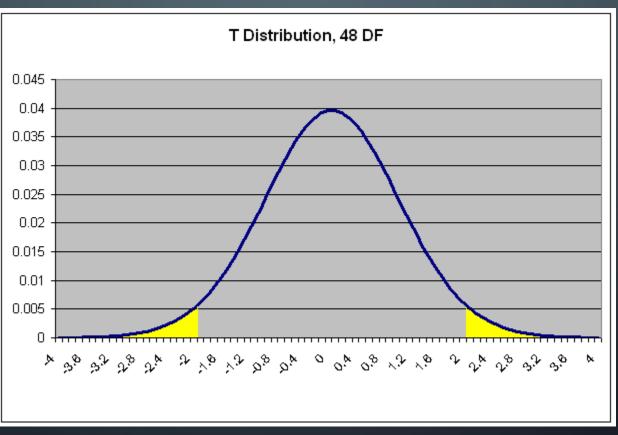
- The p-value for a t-statistic gives the probability that the difference between the experimental and control conditions arose by chance
- Typically p < 0.05 is considered minimum cut– off for significance (i.e. alpha is set at p < 0.05)</li>
- Statistics tables list the p-values for each tstatistic based on the df, degrees of freedom, (single subject analysis df=total number of scans minus 1)

#### ONE-TAILED TEST



Yellow area under the curve is about 0.025 (for t=2).

#### TWO-TAILED TEST



Yellow area under the curve is about 0.05 (for t=2).

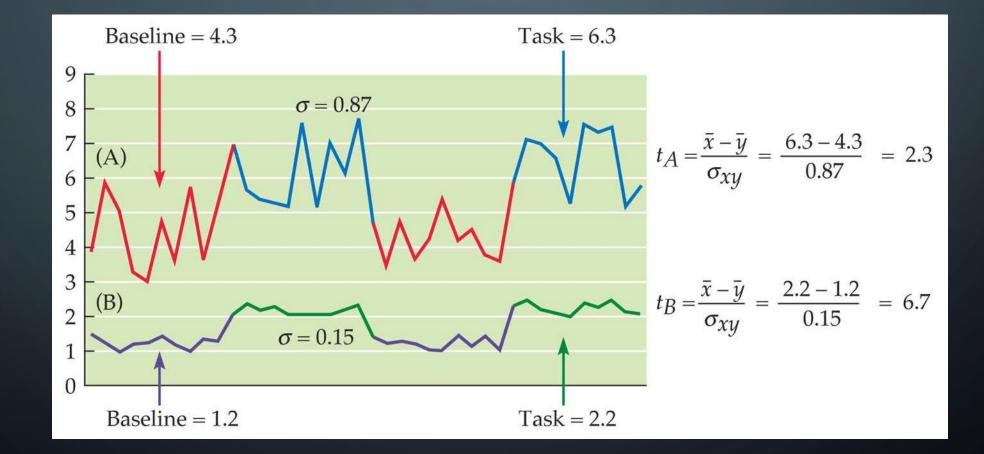
#### T-STATISTICS AND P-VALUES

#### Ex.

Suppose we find a voxel in which the t-statistic is 3.3 and there were 20 scans at rest and 20 scans while moving thumb.

The probability that the difference in the MRI signal in this voxel *is not due* to the movement of the thumb is 0.002 two-tail or 0.001 one-tail.

### EXAMPLES OF THE AFFECT OF VARIANCE



### T-STATISTICS, P-VALUES, & Z-SCORES

- Unlike t-statistics, the p-value for Z-scores, which are based on the normal distribution, does not change depending on the number of scans
- In functional imaging it is common to convert the tstatistic to a Z-score since it is easier to compare across studies (not dependent on degrees of freedom)

### PROBLEMS WITH THE T-TEST

- Systematic differences such as artifacts can create apparent significant differences where none exists
- Disregards any temporal characteristics of the data since only means are compared
- Assumption of t-test is that the data for both conditions is normally distributed - usually though not always true
  - Smoothing helps make data normally distributed

### MAKING ERRORS

#### • Two types of errors:

- Type 1: Activation is true, but we mistakenly reject it (False positive)
- Type II: Activation is false, but we fail to reject it (False negative)

|               | Disease or<br>Condition | No Disease or<br>Condition |  |
|---------------|-------------------------|----------------------------|--|
| Test Positive | A<br>True Positive      | B<br>False Positive        |  |
| Test Negative | C<br>False<br>Negative  | D<br>True<br>Negative      |  |

### MULTIPLE COMPARISON PROBLEM

- If more than one hypothesis test is performed, chance of making errors is even greater
- The more tests performed, the greater the likelihood of errors
- Say we have 32 slices, 64x64 voxels in xy plane
- If we test 64x64x32 = 131,072 comparison tests!!!
- Which voxels are actually significant?
- Want to balance sensitivity (true positive rate) and specificity (true negative rate)

### MEASURE OF FALSE POSITIVES

• There are ways to quantify the amount of false positives

• Family Wise Error Rate (FWER) – control the probability of false positives

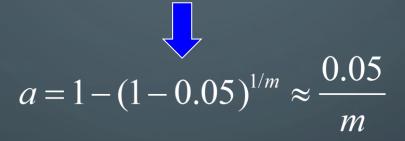
 False Discovery Rate (FDR) – control the proportion of false positives among rejected tests

### FAMILY-WISE ERROR RATE

- Control the probably of making one or more Type I errors in a family of tests
- Basically adjusting p-values for the number of hypothesis tests performed
- FWER controlling methods include:
  - Bonferroni correction
  - Random Field Theory
  - Permutation tests

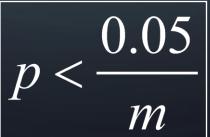
#### How to avoid false associations?

Applying *m* independent statistical tests with significance level a, a probability of at least one false association should be  $1-(1-a)^m < 0.05$ 



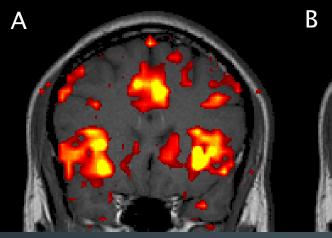
#### **Carlo Bonferroni (1935):**

When applying m independent statistical test, only significant results are results with



### **BONFERRONI CORRECTION**

- Very simple method for ensuring that the overall Type I error rate of  $\alpha$  is maintained when performing m independent hypothesis tests
- Rejects any hypothesis with p-value  $\leq \alpha/m$ :
- For example, if we want to have an experiment wide Type I error rate of 0.05 when we
  perform 10,000 hypothesis tests, we'd need a p-value of 0.05/10000 = 5 x 10<sup>-6</sup> to
  declare significance
- Problem: Extremely conservative often fail to find results



*t* = 2.10, *p* < 0.05 (*uncorrected*)

0

t = 3.60, p < 0.001 (uncorrected)



*t = 7.15, p < 0.05, Bonferroni Corrected* 

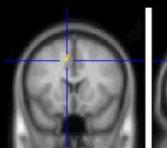
## FALSE DISCOVERY RATE (BENJAMINI, HOCHBERG, 1995)

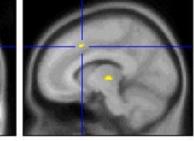
• Order tests according to p-value :

 $p_1 < p_2 < ... < p_m$ 

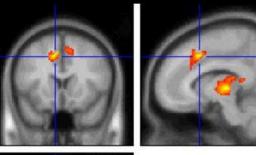
- For FDR control on  $\alpha$  level (e.g. 0.05), we find  $j^* = \max\left\{j: p_j \le \frac{j}{m}\alpha\right\}$
- Differences are assumed to be significant for j
   = 1, ..., j\*.
- For j > j<sup>\*</sup> differences are assumed not to be significant

### FWE vs FDR Working Memory Example





12





FWE Perm. Thresh. = 7.67 58 voxels FDR Threshold = 3.83 3,073 voxels

Statistics Part II John VanMeter, Ph.D. Center for Functional and Molecular Imaging Georgetown University Medical Center.

### ANALYSIS OUTPUTS

• Output from analysis software will typically include some visual representation of the results and tables of areas of activation

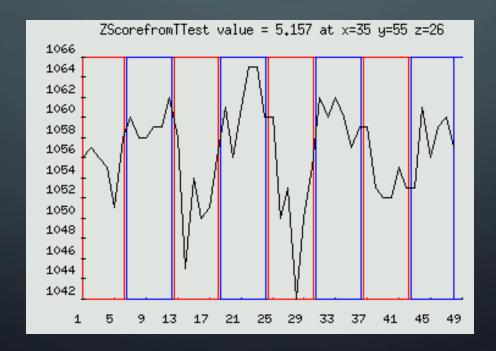
• Variety of tools available to interrogate and visualize results

### LOCAL MAXIMA REPORTING

- Utility that generates a list of coordinates that correspond to the highest values in the statistical map grouped by 'cluster'
- Clusters are defined by spatially contiguous set of voxels above a statistical threshold (p-value)
- SPM reports the maxima within each cluster and up to 2 sub-maxima at least 8 mm from the other maxima

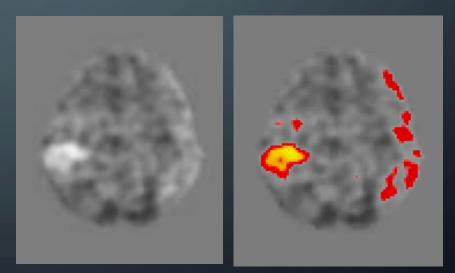
### VOXEL SURFING/PLOTTING

 Used to examine how well the changes in the MRI signal follow the on-off characteristics of the task



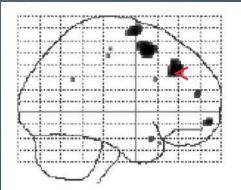
### BASIC DISPLAY OF RESULTS

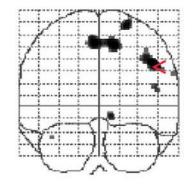
- Simply display all of the tstatistics or other statistic in gray scale or with color coding
- Useful for getting an overall sense of the results
- Can see the data in its most basic form
- Use threshold of 0.1 or higher in SPM to get similar type of display

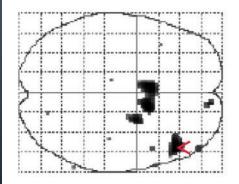


### GLASS BRAIN (SPM)

- Glass brain is a maximum intensity projection (MIP) generated for all three orthogonal planes
- Quick way to see what is activated when there are only a few areas

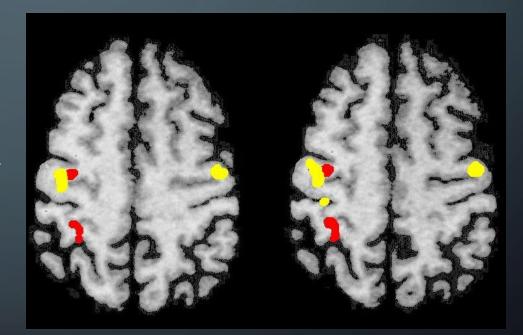






### FUSION OF FUNCTIONAL RESULTS AND ANATOMICAL IMAGE

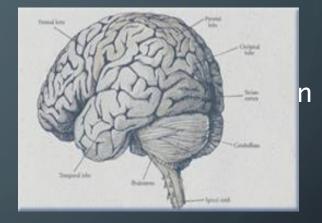
- Use co-register to overlay onto a subject's own anatomical scan
- SPM has option to overlay onto standard brain in MNI space



### WHAT DO WE DO WITH THIS "ACTIVATION INFORMATION"?

#### • Whole brain analysis

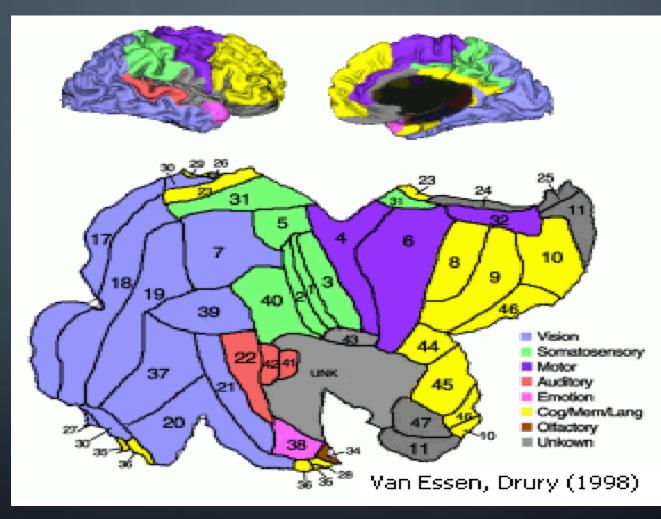
- Explore areas throughout that are active
- Compare subjects or groups



#### • Region of interest (ROI) analysis

- Explore specific areas of interest in the brain
- Percent activation in the area (number of active voxels/total number of voxels)
- Explore "level of activation" as a function of another variable (example, IQ)

### **Region of Interest Analysis**



Map of Brodmann's Areas

### EXAMPLE OF FMRI DATA ANALYSIS STEPS

Process data to remove noise

Normalize brains into a common space

Statistical analysis of individual subjects (general linear model, t-maps, F-maps, time series analysis)

Create group maps

### PROBLEMS OF GROUP MAPS

1. Limited number of subjects

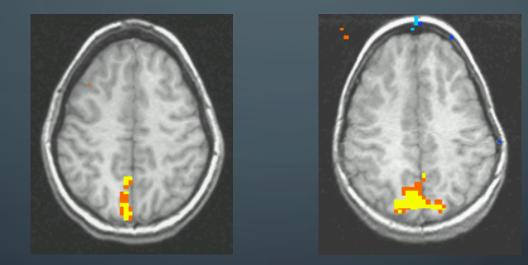
2. All brains must be "warped" into a normalized space

3. Need a method for "pooling" statistical data

4. Levels of activation vary across subjects

### FMRI GROUP ANALYSIS

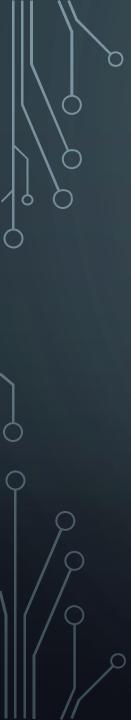
- Can look at activation for a single subject
- Can compare between 2 subjects



- What if we want to compare between 2 groups of subjects?
- Need more subjects for statistical power

### **BRAIN NORMALIZATION**

- Warp all brains into a "normalized" space by lining up brain landmarks
- Talairach and Tournoux Atlas, Montreal Neurological Institute (MNI) template
- Although this is a standard procedure in fMRI group analysis, it introduces *spatial smoothing and other errors*



### "TALAIRACHING" OF BRAINS

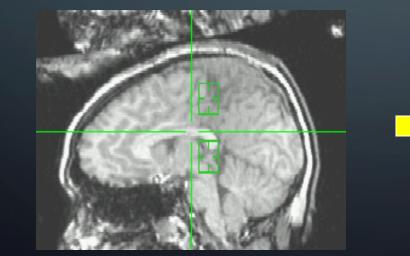
BEFORE

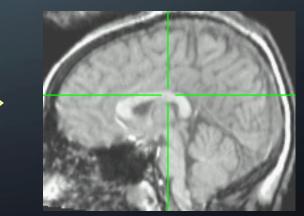




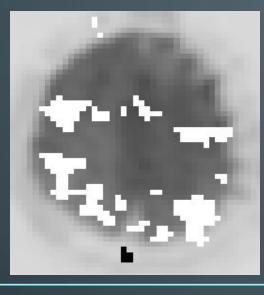


AFTER

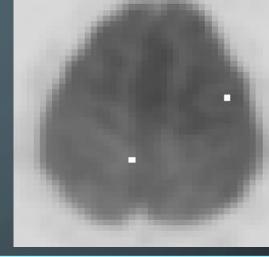


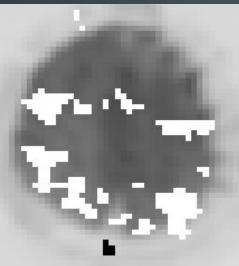


# EXAMPLE OF VARIATIONS IN ACTIVATION



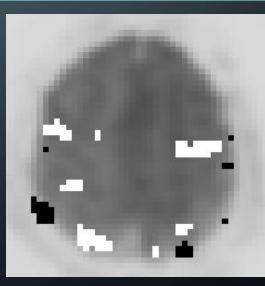
Same Task Different Subjects







Same Subject Same Task Different Years



### HOW DO WE COMBINE STATISTICAL INFORMATION?

Individual subject results are already based on statistical processing

- Combining Tests (T values, P values)
  - Fisher's Method (1950)
  - Tippett's Method (1931)
  - The Stouffer Method (1949)
  - Averaging T-maps
  - Worsley and Friston (2000)
- Combined estimation or "meta-analysis"
  - Fixed effects and random effects models

### **COMBINING METHODS**

For k independent tests of a particular null hypothesis, with corresponding P and T values...

Fisher's MethodStouffer MethodAveraging T-maps $T_F = -2\sum_{i=1}^k \log P_i$  $T_s = \sum_{i=1}^k \frac{\Phi^{-1}(1-P_i)}{\sqrt{k}}$  $T_A = \sum_{i=1}^k \frac{T_i}{\sqrt{k}}$ 

#### The Random Effects Model

$$y_i = (\theta + e_i) + \varepsilon_i$$

$$\hat{\theta}^* = \frac{\sum_{i=1}^k w_i^* y_i}{\sum_{i=1}^k w_i^*}$$

 $w_i^* = \frac{\mathbf{1}}{(s_i^2 + \hat{\sigma}_{\theta}^2)}$ 

### WHICH METHODS ARE "BEST"?

 For robust results without excessive information smoothing –

Fixed or Random effects
The Stouffer Method
Fisher's Method

 How sensitive are these to the effects of individual subjects?

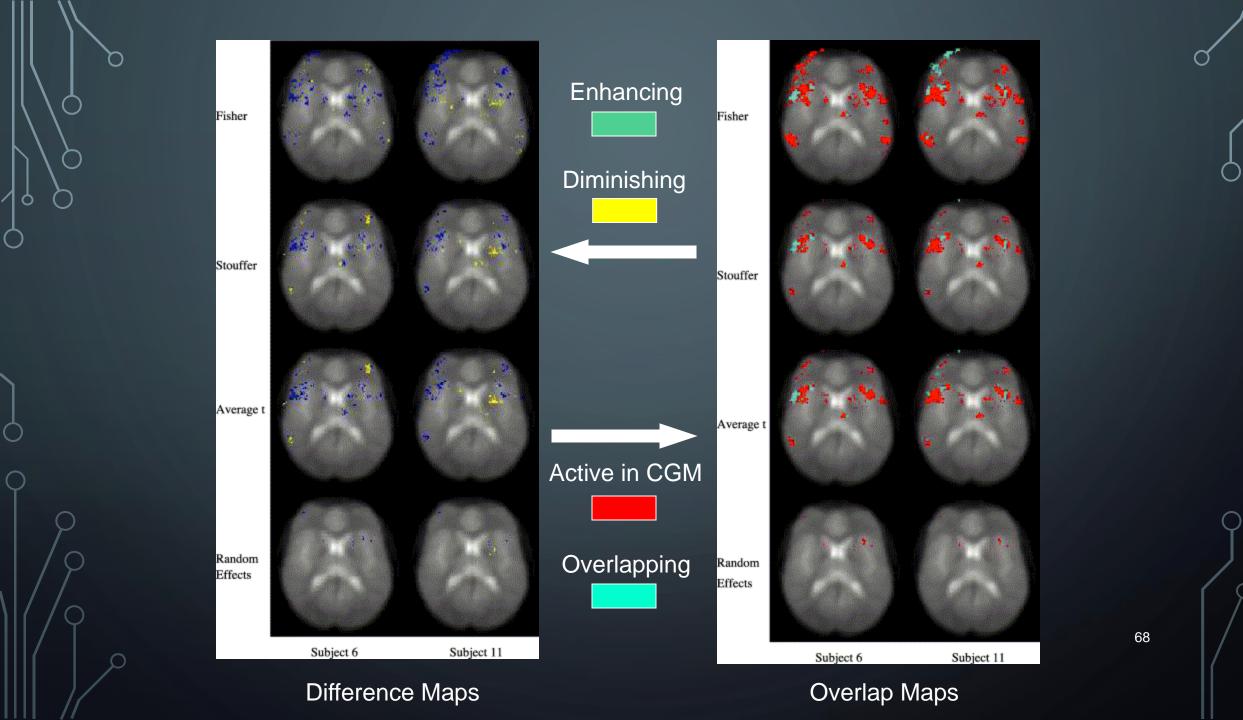
### SENSITIVITY ASSESSMENT OF GROUP MAPS

- 4 combining methods, 11 subjects
- Used "delete one subject diagnostics" (jackknifing) to create "leave one out" maps
- Recomputed group maps
- Examined changes in the resulting maps for each method as each subject was left out

### DISPARITY MEASURES FOR "LEAVE ONE OUT" MAPS

Using a standard threshold, compared each "leave one out" map to the complete group map (CGM), examining:

- Enhancing voxels *# voxels added to CGM*
- Diminishing voxels # voxels removed from CGM
- Relative effect (# enhancing voxels + # diminishing voxels) / # voxels in CGM
- Percent overlap # voxels in the subject's individual t-map also present in CGM



### DISPARITY TABLES

| Study | Enhancing voxels | Diminishing voxels | Relative effect | Percent overlap |
|-------|------------------|--------------------|-----------------|-----------------|
| 1     | 319              | 9                  | 0.47            | 0.2741          |
| 2     | 170              | 62                 | 0.34            | 0.0539          |
| 3     | 86               | 190                | 0.40            | 0.0233          |
| 4     | 185              | 47                 | 0.34            | 0.1108          |
| 5     | 155              | 29                 | 0.27            | 0               |
| 6     | 266              | 55                 | 0.47            | 0.2230          |
| 7     | 64               | 175                | 0.35            | 0.0029          |
| 8     | 249              | 51                 | 0.44            | 0.2784          |
| 9     | 132              | 93                 | 0.33            | 0.0204          |
| 10    | 199              | 76                 | 0.40            | 0.1005          |
| 11    | 205              | 89                 | 0.43            | 0.1589          |
| Mean  | 184.55           | 79.64              | 0.39            | 0.11            |
| SD    | 75.88            | 56.49              | 0.06            | 0.11            |

#### **Results from the Stouffer Method**

|  | _ |          |  |
|--|---|----------|--|
|  |   |          |  |
|  |   | $\frown$ |  |
|  |   |          |  |
|  |   |          |  |

| Study | Enhancing voxels | Diminishing voxels | Relative effect | Percent overlap |
|-------|------------------|--------------------|-----------------|-----------------|
| 1     | 432              | 50                 | 0.30            | 0.1857          |
| 2     | 176              | 113                | 0.18            | 0.0414          |
| 3     | 83               | 169                | 0.16            | 0.0113          |
| 4     | 307              | 56                 | 0.23            | 0.0909          |
| 5     | 140              | 106                | 0.15            | 0.0038          |
| 6     | 363              | 42                 | 0.25            | 0.1242          |
| 7     | 82               | 134                | 0.13            | 0.0050          |
| 8     | 673              | 14                 | 0.43            | 0.3683          |
| 9     | 156              | 146                | 0.19            | 0.0176          |
| 10    | 254              | 106                | 0.23            | 0.0928          |
| 11    | 399              | 75                 | 0.30            | 0.2114          |
| Mean  | 278.64           | 91.91              | 0.23            | 0.10            |
| SD    | 179.94           | 48.35              | 0.09            | 0.11            |

#### Random Effects

| Study | Enhancing voxels | Diminishing voxels | Relative effect | Percent overlap |
|-------|------------------|--------------------|-----------------|-----------------|
| 1     | 10               | 8                  | 0.60            | 0.0333          |
| 2     | 13               | 2                  | 0.50            | 0               |
| 3     | 6                | 42                 | 1.60            | 0               |
| 4     | 20               | 2                  | 0.73            | 0.1000          |
| 5     | 18               | 2                  | 0.67            | 0               |
| 6     | 18               | 1                  | 0.63            | 0               |
| 7     | 7                | 17                 | 0.80            | 0               |
| 8     | 14               | 6                  | 0.67            | 0.0333          |
| 9     | 9                | 3                  | 0.40            | 0               |
| 10    | 11               | 5                  | 0.53            | 0.0333          |
| 11    | 8                | 16                 | 0.80            | 0.0333          |
| Mean  | 12.18            | 9.45               | 0.72            | 0.02            |
| SD    | 4.81             | 12.14              | 0.32            | 0.03            |



### **RESULTS AND CONCLUSIONS**

Most sensitive

• Fisher's Method - *exploratory studies* 

• The Stouffer method/ Averaging of T-maps - *general use* 

Least sensitive

• Random effects - *large subject groups* 

McNamee and Lazar (2004) "Assessing the Sensitivity of fMRI Group Maps" <u>NeuroImage</u>, 22: 920-931.