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Outline
• Introduction: Challenges and concepts

• Model interpretability
– Post hoc techniques for model explanation
– Inherently-interpretable ML algorithms

• Model diagnostics

• Discussion
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• Flexible modeling … works well with large datasets
ØBetter predictive performance
ØAutomated approach to feature engineering
o Saves time
o Useful in new applications with insufficient prior knowledge on feature engineering

• BUT … Predictor !𝑓 𝑥 is implicitly defined, high-dimensional, and complex 
– Hard to interpret results
– Not an issue if goal is only prediction: recommender systems, fraud detection, …
– Big issue for regulated industries and safety-critical applications
– Banks have dual goals: good predictive performance and ensure results make sense

• Must understand model, results, and develop insights
o Why? Provide explanations to multiple stakeholders
üModel must make sense à consistent with subject-matter knowledge
ü For certain applications, model must be “fair”
üModel must be generalizable
§ Identify areas of poor model fit, fix problem, or develop mitigation strategies

üModel must be robust: not overfit or pick up artifacts in the data 

Opportunities and Challenges with ML
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Selected model soundness concepts
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Model 
soundness

Makes sense à
understand and 

explain

Good predictive
performance:

Global and Local
Generalizable

Fairness

• Quality of data
• Reproducible
• Model scope
• Model assumptions



Model soundness
• Makes sense

– Model and results are interpretable and can be explained to stakeholders
– Results are consistent with subject-matter expertise

• Good predictive performance
– In comparison to other algorithms (benchmark models for high-risk rank)
– Global as well as local 
– Generalizable to potential new environments (when it should)
o Stable to certain changes when it should be
o Good sensitivity to certain changes in key predictors

• Robust
– Not overly flexible and unstable 
– Does not overfit training data (globally or locally)

• Fair
– Does not discriminate based on protected attributes
– Results are fair to customers and other stakeholders

• Above points are not mutually exclusive
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Outline
• Introduction: Challenges and concepts
• Model interpretability

– Post hoc techniques for model explanation
– Inherently-interpretable ML algorithms

• Diagnostics for model weakness
– Predictive performance

– Global and local
– Generalizability

– Robustness
• Bias and fairness
• Discussion
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Making sense: Understanding model results
Main approaches:

I. Post hoc: Techniques for interpreting results after fitting the ML algorithm
a) Global – Important predictors; input-output relationships
b) Local – how does model behave locally; contribution of predictors to a particular prediction

II. Inherently interpretable algorithms
a) Low-order functional ANOVA models à primary focus
b) Additive index models

III. Fitting and using surrogate models to explain complex results (skip)
a) Born-again trees (piecewise constant) à Breiman
b) Locally additive tress à Hu, Chen, Nair (2022)
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• Permutation based: Model agnostic
– L. Breiman, “Random Forests”, Machine Learning, pp 5-32, 2001.
– Randomly permute the rows for variable (column) of interest 

while keeping everything else unchanged
– Compute the change in prediction performance as the measure 

of importance.
– Issues:
o Double counting of interactions
o Correlated predictors à Option: joint importance

• Selected Others (Many in literature)
– Tree-based importance metrics
o Importance of a variable 𝑥! based on impurity

§ Total reduction of impurity at all nodes where 𝑥! used for 
splitting

o For ensemble algorithms, average over all trees

– Global Shapley 
o Based on Shapley decomposition (1953); 
o Owen (2014) and others applied it to ML feature importance
o Model agnostic but computationally intractable

Post hoc global: Identifying important predictors/features

Home Mortgage-XGB

Y X1 X2 X3 X4 X5

2 1.5 0 4.5 10.2 3.0

4 2.7 1 5.3 8.7 4.2

8 3.3 1 7.2 19.3 17.6

3 1.9 0 3.3 7.8 21.2

https://doi.org/10.1023/A:1010933404324
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• Understand how fitted response varies as a function of the 
variable of interest

• One-dimensional Partial Dependence Plot (PDP)
– Friedman, J. H (2001). Greedy Function Approximation: A Gradient Boosting Machine. 

The Annals of Statistics, 29 (5): 1189-1232
– Variable of interest: 𝑥!
– Write the fitted model as !𝑓 𝑥 = !𝑓(𝑥!, 𝒙"!)
– Fix 𝑥! at 𝑐; compute the average of !𝑓 over the entire data

𝑓#$#,!(𝑥!) =
1
𝑁
-
&'(

)

!𝑓(𝑥! = 𝑐, 𝑥"!,&)

– Plot 𝑓#$#,!(𝑥!) against 𝑥! over a grid of values 𝑐(, … 𝑐*
– One-dimensional summary
– Interpretation: Effect of 𝑥! averaged over other variables

• Accumulated local effects plots (in highly correlated cases)
– Reference

Understanding input-output relationships: 
1-dimensional partial dependence plots

Home Mortgage
1-D PDP for Forecasted LTV



Assessing interactions
I. ICE (individual conditional expectation) plots 

Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2013). Peeking Inside the Black Box: Visualizing 
Statistical Learning with Plots of Individual Conditional Expectation. eprint arXiv:1309.6392

II. Two-dimensional partial dependence plots

III. H-statistics for quantifying two-dimensional interactions 
Friedman, J. H (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of 

Statistics, 29 (5): 1189-1232.

• One can use ICE plots to detect the presence of interactions, but they do not give further insights

• Items II and II examine interactions with specific pairs of variables

• They can be extended to higher-dimensional interactions 
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Individual Conditional Expectation Plots
• 1-d partial dependence plot 𝑓#$#,! 𝑥! shows 

the average over the entire data

𝑓#$#,!(𝑥!) =
1
𝑁
-
&'(

)

!𝑓(𝑥! = 𝑐, 𝑥"!,&)

• When there are interaction effects, 
!𝑓 𝑥!, 𝑥"!,& will have different patterns for 

different 𝑥_!&.
• So averaging will lose the interaction 

information.
• The ICE plot is a plot of all the N curves  
!𝑓 𝑥!, 𝑥"!,& , 𝑖 = 1, 2, … , 𝑁.

• Each curve is localized for a single 𝑖th 
observation.

• It allows us to see if there is any change of the 
input-output relationships for 𝑥!, thus to see 
any interaction effect.
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• ICE plot for a simulation example. 
– True model:  𝑙𝑜𝑔 "!

#$"!
= −8 + 1.6 𝑥# + 4 𝑥% − 𝑥&%

+ 𝑥'% + 2.4 𝑥( + 2𝑥#𝑥(
– The dots show the plot of .𝑓(𝒙)) against the observed data 𝑥$(). 
– The black curves are the ICE curves over a grid of 𝑥(.
– The red curve is the PDP, which is the average of all ICE curves.
– CICE plots are centered versions
– If we  further subtract the PDP, we get the normalized CICE.
– It shows the remainder interaction effects after subtracting the 

main effects of 𝑥( and 𝑥*
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Input-output relationships: 
Two-dimensional partial dependence plots

• One way to display 2D-PDPs 
• Multiple 1D-PDPs for the variable on the x-axis
• Multiple curves: Each represent fixed values of the second variable
• Non-parallel curves show interactions

• Other ways to display information  include contour plots and heat maps



H-statistics to measure two-dimensional interactions
• 𝐻!+ to measure the interaction between 𝑥! and 𝑥+

𝐻456 =
∑"#$
% 8&'& 9"(,9") ;8&'& 9"( ;8&'& 9")

*

∑"#$
% 8&+,* 9"(,9")

, 𝐻45 = 𝐻456

– 𝑓"," 𝑥)! , 𝑥)+ , 𝑓"," 𝑥)! , 𝑓"," 𝑥)+ are the centered two and one-dimensional partial dependence functions
– 𝐻!+% is the proportion of variation in 𝑓"-. 𝑥)! , 𝑥)+ unexplained by an additive model – relative measure
– There is no easy way assess if it is large or small

• One can also use an absolute version of H-statistic (without the denominator)

$𝐻456 = <
=
∑>?<= 𝑓@A@ 𝑥>4, 𝑥>5 − 𝑓@A@ 𝑥>4 − 𝑓@A@ 𝑥>5

6
, $𝐻45= $𝐻456

13



Illustration: 2-D PDPs and H-statistics: Home Lending Example
• Interactions between FICO and LTV_forcast (left),  h and dlq_new_clean(right).
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fico0 ltv_fcast dlq_new_clean unemprt totpersincyy h premod_ind

fico0 NaN 0.1630 0.1224 0.0820 0.0360 0.0339 0.1107
ltv_fcast 0.1630 NaN 0.0518 0.0291 0.0286 0.0186 0.0843

dlq_new_clean 0.1224 0.0518 NaN 0.0101 0.0071 0.2296 0.0003
unemprt 0.0820 0.0291 0.0101 NaN 0.0232 0.0122 0.0094

totpersincyy 0.0360 0.0286 0.0071 0.0232 NaN 0.0068 0.0661
h 0.0339 0.0186 0.2296 0.0122 0.0068 NaN 0.0192

premod_ind 0.1107 0.0843 0.0003 0.0094 0.0661 0.0192 NaN

Delinquency vs horizon LTV_fcast vs fico



• Two questions of Interest:

1. How does the model behave locally at a point of interest?

2. Consider the predicted value at a point of interest !𝑓 𝒙∗ = !𝑓 𝑥(∗, … , 𝑥-∗ :
What are the contributions of the different variables/features {𝑥(, … 𝑥-} to this prediction?     

We will see an example of this in credit applications.

• If fitted model is linear: !𝑓 𝒙 = 𝑏. + 𝑏(𝑥( + …𝑏-𝑥/, 
we can answer both questions using the regressions coefficients.

– Answer to 1: Model is linear à magnitudes and signs of regression coefficients provide explanation

– Answer to 2: Contribution of 𝑥!∗ is 𝑏!𝑥!∗

• BUT … how to extend these interpretations to ML  algorithms?

Techniques for local explanation
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Techniques for local explanation: Question 1
• How can we interpret the response surface locally at selected 

points of interest?

• LIME
– Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: 

Explaining the predictions of any classifier. Proceedings of the 22nd ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 
(pp. 1135-1144)

– Fit a linear model locally around the point and use for interpretation
– Above reference suggests a particular way to fit a local model – but 

there are simple ways to do it.

• FFNNs based on RELU activation function
– Essentially partitions predictor space into regions and fits a linear 

regression model within
– Difference with LIME: local linear model developed for each point
– FFNN-RELU yields same linear model for all points in region

• Piecewise constant tree
– Single regression tree or RF or XGB)
– Same as FFNN but splits into rectangular regions
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Techniques for local explanation: Question 2
• Consider the predicted value at a point of interest
!𝑓 𝒙∗ = !𝑓 𝑥(∗, … , 𝑥-∗

• What are the individual contributions of {𝑥(, … 𝑥-} to 
this prediction?

• Involves comparison of prediction to a reference point 
(“average”)

• Approaches in previous slide cannot be used

• Many techniques in the literature

• Common approaches based on local Shapley 
decomposition (called SHAP)
– Lundberg and Lee (2017)
– Many variations: Kernel SHAP, Tree SHAP
– Recommend Baseline SHAP 
– Sundarajan and Najmi (2019)
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General expression for B-SHAP
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• Let 𝑓 𝒙 be the fitted model with K variables
• Consider two points of interest in the predictor space: point of interest 𝒙𝑫 and a reference point 𝒙𝑨

• The goal is to decompose the difference [𝑓 𝒙𝑫 − 𝑓 𝒙𝑨 ] and attribute it to the difference variables 𝑥#, … 𝑥1
• Baseline-SHAP decomposition

𝐸+ = 𝐸+ 𝒙𝑫; 𝒙𝑨 = F
𝑺"⊆𝑲\{+}

𝑺𝒌 ! |𝑲| − 𝑺𝒌 !
|𝑲|! 𝑓 𝑥+9; 𝒙𝑺𝒌

𝑫 ; 𝒙𝑲\𝑺𝒌
𝑨 − 𝑓 𝑥+:; 𝒙𝑺𝒌

𝑫 ; 𝒙𝑲\𝑺𝒌
𝑨 .

• Looks formidable

• Consider simple case with two variables: 𝐾 = 2
• Decomposing 𝑓 𝑥#9 , 𝑥%9 − 𝑓 𝑥#:, 𝑥%: into 

contributions by 𝑥# and 𝑥%
• Consider contribution by 𝑥#
• All possible subset: 𝜙, 1, 2, 1, 2 ; 𝑺# = 𝜙, 2

• 𝐸( =
(
0 {[𝑓 𝑥(1, 𝑥02 − 𝑓 𝑥(2, 𝑥02 ] + [𝑓 𝑥(1, 𝑥01 −𝑓 𝑥(2, 𝑥01 ]}



Case with two predictors: Motivation from first principles

𝑓 𝑥(1, 𝑥01 − 𝑓 𝑥(2, 𝑥02 = 𝐸(( + 𝐸00

𝑓 𝑥(1, 𝑥01 − 𝑓 𝑥(2, 𝑥02 = 𝐸0( + 𝐸(0

• 𝐸(( = 𝑓 𝑥(1, 𝑥01 − 𝑓 𝑥(2, 𝑥01

• 𝐸(0 = 𝑓 𝑥(1, 𝑥02 − 𝑓 𝑥(2, 𝑥02

• 𝐸( = (
0
𝐸(( + 𝐸(0

• 𝐸( =
(
0
𝐸(( + 𝐸(0 à

(
0

𝑓 𝑥(1, 𝑥01 − 𝑓 𝑥(2, 𝑥01 + 𝑓 𝑥(1, 𝑥02 − 𝑓 𝑥(2, 𝑥02

• 𝐸0 =
(
0
𝐸0( + 𝐸00 à

(
0

𝑓 𝑥(1, 𝑥01 − 𝑓 𝑥(1, 𝑥02 + 𝑓 𝑥(2, 𝑥01 − 𝑓 𝑥(2, 𝑥02

• What happens in linear model with no interactions? 
o 𝑓 𝒙 = 𝑏. + 𝑏(𝑥( + 𝑏0𝑥0
o 𝐸( = 𝑏( 𝑥(1 − 𝑥(2
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Issues with ML algorithms and post hoc explanantions

20

• Most post-hoc tools for studying input-output relationships are lower-dimensional summaries
• Limited in ability to characterize complex models that may have different local behaviors
• Need better visualization tools in high-dimensions

• ML algorithms: Function-fitting vs modeling
• High-dimensional ML – can do very good function fitting with large samples
• What is a role of a model?



Correlation can create havoc!
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!𝑓 𝒙 = !𝑓 𝒙𝒋, 𝒙"𝒋 is the fitted model 

!𝑓41,! 𝑧 =
1
𝑁-
&'(

)

!𝑓(𝑥! = 𝑧, 𝒙"𝒋,𝒊)

When predictors are highly correlated:
Performance of VI analyses and PDPs?
• Extrapolation
• Poor model fit outside data envelope
• Alternatives: ALE (Apley and Zhu, 2020), ATDEV (Liu et al. 2018)

Bigger issue: Model identifiability
𝑓 𝑥(, 𝑥0 = 𝛽(𝑥( + 𝛽0𝑥0 + 𝛽(0 𝑥(𝑥0 à 𝑔(𝑥() ?

• Main effect à masked by quadratic term from interaction
• Different ML algorithms can capture the masking differently
• VI analysis à permute correlated variables jointly

These are known problems to statisticians à that’s why there has been a lot of model diagnostics!
But the view in ML is to throw as many predictors as possible into the mix and automate model building

No easy answers!



Adverse action in credit applications: 
An illustration of local explanation
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Adverse action (AA) in credit applications
• AA occurs in different contexts: lending, insurance, job application, etc.

• Credit Lending: 
– Regulation B of Equal Credit Opportunity Act – Both consumers and businesses

– A refusal to grant credit in substantially the amount or terms requested in an application … ;
– A termination of an account or an unfavorable change in the terms of an account … ; 
– A refusal to increase the amount of credit available to an applicant ...

• US Fair Credit Reporting Act
– Covers only consumers
– Broader scope: credit, insurance, employment, government license or benefit, …

• Applicants are legally entitled to get an explanation for a negative decision
– i) specific principal reason(s) for action; or 
– ii) disclose to the applicant they have the right to request reason(s) for denial
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Adverse action (AA) explanation and Reason Codes
• Nature of explanation depends on stage of review and decision processes

– Incomplete or unverifiable information
– Decision based on judgement, credit system, or combination

• Examples of Reason Codes

Issues with application After assessment
• Credit application incomplete
• Unable to verify credit references
• Length of employment

• Insufficient income 
• Limited credit experience
• Number of recent inquiries on credit bureau report
• Delinquent credit obligations
• Value of collateral not sufficient



Decision based on predictive models: Problem formulation

• 𝒙 = 𝑥<, … , 𝑥M
• 𝐾 −dimensional attribute used for credit decision

• Use historical data 𝑦>, 𝒙> , 𝑖 = 1,…𝑛
to develop model for probability of default (PoD)

• Fitted model for PoD: 𝑝 𝒙

• Decision: 
– Accept application with attributes 𝒙∗ if  𝑝 𝒙∗ ≤ 𝝉; 
– Decline otherwise

25

Decline Accept

𝒙∗

𝑥#

𝑥%



Adverse action (AA) explanation: Reference point

Selecting of a reference point for comparison

• 𝒙𝑫 attribute of declined application

• Adverse action explanation:
o Choose a reference point 𝒙𝑨

o Difference: 𝒑 𝒙𝑫 − 𝒑 𝒙𝑨
o Attribute difference to predictors

• Choice of reference points in “accept” space
• Internal point
• On the boundary

• Choices on the boundary
o Varies with declined application
o Uncertainty of decision boundary
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Adverse action explanation

Figure: Selection of a reference point for comparison

• 𝒙𝑫 attribute of declined application

• Pick a reference point 𝒙𝑨

• Decompose difference: [𝒑 𝒙𝑫 − 𝒑 𝒙𝑨 ]
and allocate to each of the 𝐾 predictors

• Better to do it in terms of 𝑓 𝒙 = 𝑙𝑜𝑔𝑖𝑡 𝑝 𝒙

o 𝑓 𝒙𝑫 − 𝑓 𝒙𝑨 = 𝐸( 𝒙𝑫, 𝒙𝑨 + 𝐸0 𝒙𝑫, 𝒙𝑨 + … + 𝐸- 𝒙𝑫, 𝒙𝑨

where 𝐸/ 𝒙𝑫, 𝒙𝑨 is the allocation to  (contribution by) 𝑘 −th predictor

From here on, denote 𝐸/ 𝒙𝑫, 𝒙𝑨 as 𝑬𝒌
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Illustrative Example

Simulated Data:
• 50,000 accounts
• Default or not in 18 months
• 10 predictors
• Distributions of predictors 

mimic bureau data

Fitted Model:
• Feedforward NN
• Constrained to be monotone 

in indicated variables
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Variable Name Description Monotone in 
probability of 

default
Response: 
𝒚 = default indicator

𝑦 = 1 if account defaulted and 𝑦 = 0 if it did not default

Predictors

x1 = avg bal cards std Average monthly debt standardized: amount owed by applicant) on all of 
their credit cards over last 12 months

N

x2 = credit age std Age in months of first credit product standardized: first credit cards, auto-
loans, or mortgage obtained by the applicant 

Y = Decreasing 

x3 = pct over 50 uti Percentage of open credit products (accounts) with over 50% utilization N

x4 = tot balance std
Total debt standardized: amount owed by applicant on all of their credit 
products (credit cards, auto-loans, mortgages, etc.)

N

x5 = uti open card Percentage of open credit cards with over 50% utilization N

x6 = num acc 30d past 
due 12 months

Number of non-mortgage credit-product accounts by the applicants that 
are 30 or more days delinquent within last 12 months (Delinquent means 
minimum monthly payment not made)

Y = Increasing

x7 = num acc 60d past 
due 6 months

Number of non-mortgage credit-product accounts by the applicants that 
are 30 or more days delinquent within last 6 months

Y = Increasing

x8 = tot amount currently 
past due log

Total debt standardized: amount owed by applicant on all of their credit 
products – credit cards, auto-loans, mortgages, etc.

Y = Increasing

x9 = num credit inq 12 
month

Number of credit inquiries in last 12 months. An inquiry occurs when the 
applicant's credit history is requested by a lender from the credit bureau. 
This occurs when a consumer applies for credit.

Y = Increasing

x10 = num credit card inq
24-month

Number of credit card inquiries in last 24 months. An inquiry occurs 
when the applicant's credit history is requested by a lender from the 
credit bureau. This occurs when a consumer applies for credit.

Y = Increasing
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Correlation

x1 = avg bal cards std
x2 = credit age std flip
x3 = pct over 50 uti
x4 = tot balance std
x5 = uti open card
x6 = num acc 30d past due 12 months
x7 = num acc 60d past due 6 months
x8 = tot amount currently past due log
x9 = num credit inq 12 month
x10 = num credit card inq 24-month

• Block correlation among similar features
• High-levels
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Training Monotone Neural Network

• Iterative algorithm: Fit with a penalty for monotonicity; certify; and iterate

• 50,00 accounts à training: 80%, validation and training: 10% each

• Final model: three hidden layers with dimensions [35, 15, 5]; learning rate (LR) = 0.001

• For comparison: 
– fitted unconstrained Feedforward Neural Network (FFNN) [23, 35, 15]; LR = 0.004

Algorithm Training AUC Test AUC
FFNN 0.810 0.787

M-NN 0.807 0.797

Training and Test AUCs for the Two Algorithms
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Variable Importance for Mono-NN: All and Correlated 

x2 = credit age std flip
x6 + x7 + x8 = accounts past due

x9 + x10 = inquiries
x1 + x4  = balance

x4 = tot balance std
x3 + x5 = utilization

Individual Variable Importance Joint Variable Importance for Correlated predictors
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PDPs for Mono-NN
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Two-dimensional PDPs of Variables with Interactions

 

Figure XX. 2D-PDP of M-NN for selected predictors. 

x1 = avg bal cards std x4 = tot balance stdx5 = uti open card x3 = pct over 50 uti



AA explanation: Decision rule – decline if 𝑝(𝑥) > 0.25
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Predictors 𝒙𝑨 𝒙𝟏𝑫 

M-NN 
Attributions 

for 𝒙𝟏𝑫 
𝒙𝟐𝑫 

M-NN 
Attributions for 

𝒙𝟐𝑫 
x1 = avg bal cards std -0.006 0.674 0.112 (3.5%) 0.519 0.028 (0.5%) 
x2 = credit age std flip -0.733 0.886 1.928 (59.5%) 0.431 1.565 (26.5%) 
x3 = pct over 50 uti 0.518 0.531 0.001 (0.0%) 0.522 -0.001 (0.0%) 
x4 = tot balance std -0.001 0.562 −0.008 (0.2%) 1.968 -0.201 (−3.4%) 
x5 = uti open card 0.501 0.577 0.012 (0.4%) 0.525 -0.024 (−0.4%) 
x6 = num acc 30d past due 
12 months 0.000 0.000 0.0 (0.0%) 4.000 1.850 (31.3%) 
x7 = num acc 60d past due 6 
months 0.000 0.000 0.0 (0.0%) 2.000 0.984 (16.6%) 
x8 = tot amount currently 
past due  std 0.000 0.000 0.0 (0.0%) 4.379 1.712 (28.9%) 
x9 = num credit inq 12 
month 0.000 3.000 1.010 (31.2%) 0.000 0.0 (0.0%) 
x10 = num credit inq 24 
month 0.000 4.000 0.186 (5.7%) 0.000 0.0 (0.0%) 

𝒑((𝒙) 0.016 0.294  0.858  
𝒇(𝒙) = 𝒍𝒐𝒈𝒊𝒕2𝒑((𝒙)3 −4.117 −0.876  1.797  

 



AA explanation: Decision rule – decline if 𝑝(𝑥) > 0.25
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Predictors 𝒙𝑨 𝒙𝟏𝑫 

M-NN 
Attributions 

for 𝒙𝟏𝑫 
𝒙𝟐𝑫 

M-NN 
Attributions for 

𝒙𝟐𝑫 
x1 = avg bal cards std -0.006 0.674 0.112 (3.5%) 0.519 0.028 (0.5%) 
x2 = credit age std flip -0.733 0.886 1.928 (59.5%) 0.431 1.565 (26.5%) 
x3 = pct over 50 uti 0.518 0.531 0.001 (0.0%) 0.522 -0.001 (0.0%) 
x4 = tot balance std -0.001 0.562 −0.008 (0.2%) 1.968 -0.201 (−3.4%) 
x5 = uti open card 0.501 0.577 0.012 (0.4%) 0.525 -0.024 (−0.4%) 
x6 = num acc 30d past due 
12 months 0.000 0.000 0.0 (0.0%) 4.000 1.850 (31.3%) 
x7 = num acc 60d past due 6 
months 0.000 0.000 0.0 (0.0%) 2.000 0.984 (16.6%) 
x8 = tot amount currently 
past due  std 0.000 0.000 0.0 (0.0%) 4.379 1.712 (28.9%) 
x9 = num credit inq 12 
month 0.000 3.000 1.010 (31.2%) 0.000 0.0 (0.0%) 
x10 = num credit inq 24 
month 0.000 4.000 0.186 (5.7%) 0.000 0.0 (0.0%) 

𝒑((𝒙) 0.016 0.294  0.858  
𝒇(𝒙) = 𝒍𝒐𝒈𝒊𝒕2𝒑((𝒙)3 −4.117 −0.876  1.797  

 

• Can modify to get combined explanation for 
groups of correlated predictors

Groups of predictors
M-NN 

Attributions 
for 𝒙𝟏𝑫

balance 0.126 (3.9%)
credit age std flip 1.925 (59.4%)
utilization 0.018 (0.5%)
num acc 0.000 (0.0%)
num inq 1.173 (36.2%)



AA explanation: Decision rule – decline if 𝑝(𝑥) > 0.25
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• Combined explanation for groups of 
correlated predictors

 
Predictors 𝒙𝑨 𝒙𝟐𝑫 

M-NN 
Attributions for 

𝒙𝟐𝑫 
x1 = avg bal cards std -0.006 0.519 0.028 (0.5%) 
x2 = credit age std flip -0.733 0.431 1.565 (26.5%) 
x3 = pct over 50 uti 0.518 0.522 -0.001 (0.0%) 
x4 = tot balance std -0.001 1.968 -0.201 (−3.4%) 
x5 = uti open card 0.501 0.525 -0.024 (−0.4%) 
x6 = num acc 30d past due 
12 months 0.000 4.000 1.850 (31.3%) 
x7 = num acc 60d past due 6 
months 0.000 2.000 0.984 (16.6%) 
x8 = tot amount currently 
past due  std 0.000 4.379 1.712 (28.9%) 
x9 = num credit inq 12 
month 0.000 0.000 0.0 (0.0%) 
x10 = num credit inq 24 
month 0.000 0.000 0.0 (0.0%) 

𝒑'(𝒙) 0.016 0.858  
𝒇(𝒙) = 𝒍𝒐𝒈𝒊𝒕1𝒑'(𝒙)2 −4.117 1.797  

 

Groups of predictors
M-NN 

Attributions for 
𝒙𝟐𝑫

balance -0.328 (-5.5%)
credit age std flip 1.785 (30.2%)
utilization -0.018 (-0.3%)
past due 4.476 (75.7%)
num inq 0.000 (0.0%)



Outline
• Introduction: Challenges and concepts
• Model interpretability

– Post hoc techniques for model explanation
– Inherently-interpretable ML algorithms

• Diagnostics for model weakness
– Predictive performance

– Global and local
– Generalizability

– Robustness
• Bias and fairness
• Discussion
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Inherently interpretable models
• Key characteristics

§ Parsimony à easier to interpret
üSparsity à few active effects or complicated relationships
üLow-order interactions à more than two hard to understand

§ Analytic expression à use regression coefficients for interpretation

• Goals and challenges of complex ML models
– Extract as much predictive performance as possible
– No emphasis on interpretation à lots of variables, complex relationships and interactions
– No analytic expressions à rely on low dimensional summaries à don’t present the full picture

• Emerging view
– Low-order functional (nonparametric) models are adequate in most of our applications 

à tabular data in banking
– Directly interpretable
– Reversing emphasis on complex modeling 

à trade-off: small improvements in predictive performance vs interpretation
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• Functional ANOVA Models: 

𝑓 𝒙 = 𝑔. +-
!

𝑔! 𝑥! +-
!9/

𝑔!/ 𝑥!, 𝑥/ + -
!9/9:

𝑔!/: 𝑥!, 𝑥/, 𝑥: +⋯

– FANOVA models with low-order interactions are adequate for many of our applications
– Focus on models with functional main effects and second order interactions
– Stone (1994); Wahba and her students (see Gu, 2013) 

à use splines to estimate low-order functional effects non-parametrically
– Not scalable to large numbers of observations and predictors
– Recent approaches 

à use ML architecture and optimization algorithms to develop fast algorithms

Example of “Low Order” Models
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𝑓(𝒙) = 𝑔. +-
!

𝑔! 𝑥! +-
!9/

𝑔!/ 𝑥!, 𝑥/

• Model made up of mean 𝑔., main effects 𝒈𝒋 𝒙𝒋 , two-factor interactions 𝒈𝒋𝒌 𝒙𝒋, 𝒙𝒌
• Interpretability

– Fitted model is additive, effects are enforced to be orthogonal
– Components can be easily visualized and interpreted directly
– Regularization or other techniques used to keep model parsimonious

• Two state-of-the-art ML algorithms for fitting these models: 
– Explainable Boosting Machine (Nori, et al. 2019) à boosted tress
– GAMI Neural Networks (Yang, Zhang and Sudjianto, 2021) à specialized NNs
– GAMI-Tree (Hu, Chen, and Nair, 2022) à specialized boosted model-based trees

FANOVA framework

Nori, Jenkins, Koch and Caruana (2019). InterpretML: A Unified Framework for Machine Learning Interpretability. arXiv: 1909.09223
Yang, Zhang and Sudjianto (2021, Pattern Recognition): GAMI-Net. arXiv: 2003.07132

https://arxiv.org/abs/1909.09223
https://arxiv.org/abs/2003.07132
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• EBM – Boosted-tree algorithm by Microsoft group (Lou, et al. 2013)

𝑓 𝒙 = 𝑔< +F𝑔! 𝑥! +F𝑔!+(𝑥! , 𝑥+)

– Microsoft InterpretML (Nori, et al. 2019)
– fast implementation in C++ and Python

• Multi-stage model training : 

– 1: fit functional main effects non-parametrically 

– Shallow tree boosting with splits on the same variable for capturing a non-linear 
main effect

– 2: fit pairwise interactions on residuals:

a. Detect interactions using FAST algorithm 
b. For each interaction (𝑥! , 𝑥+), fit function 𝑔!+(𝑥! , 𝑥+) non-parametrically using a 

tree with depth two:  1 cut in 𝑥! and 2 cuts in 𝑥+, or 2 cuts in 𝑥! and 1 cut in 𝑥+
(pick the better one)

c. Iteratively fit all the detected interactions until convergence 

Explainable Boosting Machine

Lou, Caruana, Gehrke and Hooker (2013). Accurate Intelligible Models with Pairwise Interactions. Microsoft Research

https://www.microsoft.com/en-us/research/publication/accurate-intelligible-models-pairwise-interactions/
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Explainable boosting machine: Example

Friedman1 simulated data: 

• sklearn.datasets.make_friedman1
n_samples=10000, n_features=10, and 
noise=0.1. 

• Multivariate independent features 𝒙
uniformly distributed on [0,1]

• Continuous response generated by 
𝑦 𝒙 = 10sin 𝜋𝑥.𝑥( + 20 𝑥0 − 0.5 0

+20𝑥; + 10𝑥< + 𝜖

depending only 𝒙𝟎~𝒙𝟒

EBM Output with Test RMSE = 0.0284 and R2 = 97.39%  

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html


43

GAMI-Net
• NN-based algorithm for non-parametrically fitting

𝑓 𝒙 = 𝑔. +-𝑔! 𝑥! +-𝑔!/(𝑥!, 𝑥/)

• Multi-stage training algorithm: 

1: estimate {𝑔! 𝑥! } à train main-effect subnets and prune small 
main effects 

2: estimate {𝑔!+(𝑥! , 𝑥+)}à compute  residuals from main effects and 
train pairwise interaction nets 

§ Select candidate interactions using heredity constraint 
§ Evaluate their scores (by FAST) and select top-K interactions;
§ Train the selected two-way interaction subnets;
§ Prune small interactions

3: retrain main effects and interactions simultaneously

Yang, Zhang and Sudjianto (2021, Pattern Recognition): GAMI-Net. arXiv: 2003.07132

https://arxiv.org/abs/2003.07132
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• Each effect importance (before normalization) is given by

𝐷 ℎ! =
1

𝑛 − 1
-
&'(

?

𝑔!0(𝑥&!) , 𝐷 𝑓!/ =
1

𝑛 − 1
-
&'(

?

𝑔!/0 (𝑥&!, 𝑥&/)

• For prediction at 𝒙&, the local feature importance is given by

𝜙! 𝑥&! = 𝑔! 𝑥&! +
1
2
-
!@/

𝑔!/(𝑥&!, 𝑥&/)

• For GAMI-Net (or EBM), the global feature importance is given by 

FI 𝑥! =
1

𝑛 − 1F
)=#

>

𝜙! 𝑥)! − 𝜙!
%

• The effects can be visualized by a line plot (for main effect) or heatmap (for pairwise interaction).

Diagnostics: Effect importance and feature importance
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GAMI-Net: Example 

Friedman1 data:  

𝑦 𝒙 = 10sin 𝜋𝑥<𝑥# + 20 𝑥% − 0.5 % + 20𝑥& + 10𝑥? + 𝜖

Same data generated as for EBM example.

GAMI-Net Output with Test RMSE = 0.0058 and R2 = 99.89%  
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Comparisons: Bike Sharing Data

Bike sharing data:

• Another popular benchmark UCI dataset 
consisting of hourly count of rental bikes 
between years 2011 and 2012 in Capital 

bikeshare system.  

• Sample size: 17379

• The features include weather conditions, 
precipitation, day of week, season, hour 
of the day, etc. 

• The response is count of total rental bikes.

EBM Output with test RMSE = 0.0825 and R2 = 80.58%

GAMI-Net Output with test RMSE = 0.0595 and R2 = 89.89%

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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• Additive Index Models: 
𝑓 𝒙 = 𝑔( 𝜷𝟏𝑻𝒙 + 𝑔0 𝜷𝟐𝑻𝒙 + …+ 𝑔- 𝜷𝑲𝑻𝒙

– Generalization of GAMs: 
𝑓 𝒙 = 𝑔( 𝑥( + 𝑔0 𝑥0 + …+ 𝑔4 𝑥4

– Incorporates certain types of interactions
– Projection pursuit regression (Friedman and Stuetzle, 

1981)
– Need for scalable algorithms with large datasets and 

many predictors

– Use specialized neural network architecture and 
associated fast algorithms
– eXplainable Neural Networks (xNNs) à Vaughan, 

Sudjianto, … Nair (2020)

Another example of “Low Order” Models:



Outline
• Introduction: Challenges and concepts

• Model interpretability
– Post hoc techniques for model explanation
– Inherently-interpretable ML algorithms

• Model diagnostics

• Discussion
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Outline: Model diagnostics
• Overview of diagnostics

• Global predictive performance

• Model performance weakness
– Local analysis using supervised partitioning 
– Unsupervised analysis of residuals

• Generalizability on unseen data

• Uncertainty quantification

• Model stability assessment (Robustness)
– Perturbations in the X-space
– Perturbations in Y-space
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Model Weaknesses
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Types Possible causes

Poor Predictive Performance
• Overall (compared with other algorithms)
• Locally in some regions

• Limitations of algorithm
• Missing important predictors/interactions
• Not flexible enough to capture varying structure

• Heterogeneity in the data
• Model changes over time
• Different segments with varying behavior
• Data sparsity in certain regions

Inconsistent with subject-matter knowledge • Missing important predictors/ interactions
• Wrong predictors/interactions in model
• Reason: high correlation
• Incorrect feature engineering 
• Desired monotonicity not enforced

Does not generalize well in hold-out data • Out-of-time: model changes over time
• Tails of dataset: behavior in tail different from training data
• In data-sparse regions: not enough data
• Poor extrapolation behavior – piecewise constant trees

Lack of Robustness
• Overfitting
• Sensitive to small input perturbations

• Model is too flexible 
• Overly “parametrized”
• Needs regularization



Assessing Model Performance

• Traditional approaches listed below:

• Which of these can be used with modern ML algorithms?

• Predictive Performance Assessment
– Performance metrics (MSE, R-squared, AUC, etc.) 
– Std errors and p-values of estimated coefficients
– Hold-out sample (in-sample and out-of-sample) prediction accuracy
– Comparisons with challenge/benchmark models, …

• Model Diagnostics
– Checking model assumptions: Linearity/nonlinearity, interactions, regime change, …
– Checking error structure: equal variance, independence, stationarity, seasonality, etc.
o Use of residual plots, QQ plots, …
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Comparing global predictive performance
• How does the algorithm’s predictive performance compare against peers – “benchmark model(s)”

• Illustrative example:
– Home mortgage loans
– Response: binary (“in trouble loans”
– Twenty-two predictors
o loan-to-value ratio;
o credit score over time; 
o Before or after financial crisis
o Unemployment rate; 
o income; 
o delinquency status, etc.

• Comparison of Logistic Regression against
– Random Forest
– Gradient Boosting
– Feedforward Neural Networks

• 4-5% improvement à Is this good improvement?
• Why?

– Missing predictors?
– Interactions, transformations?
– use this information to improve

• Typically, look at multiple metrics
52



Model weakness and residual analysis
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Analyzing residuals of fitted model
• Rationale

– If original model does not fit well, there will be structure in the residuals
– Analyze the residuals in different ways to identify possible remaining structure and understand possible reasons

• Fit a different global model to the residuals
– For example: original model is logistic regression à we fit (new) XGB model to residuals
– Does the combined fit produce considerable improvement in predicted performance
– If yes, identify possible reasons: 
o important predictors/interactions present in new model for residuals?
o wrong feature engineering in original model?

• Supervised partitioning of residuals
– Fit a tree to identify regions where the model does not fit as well
– Try to understand causes of the poor fit

• Unsupervised analysis of residuals
– Just pick the top K% of residuals (in absolute value) and examine how the predictors for the top ones are different

• Definition of residual
– Obvious for continuous response: residual  𝑟) = (𝑦) − ]𝑦))
– Not clear for binary response à several choices and challenges 54



Global analysis of residuals using simulation study
• Functional form

𝑓 𝑥 = 𝛽.𝑥. +⋯+ 𝛽E𝑥E + 𝛽F𝑥F0 + 𝛽G𝑥G0 + 𝛽.(𝑥.𝑥( + 𝛽0;𝑥0𝑥; + 𝛽.0 𝑥.𝑥0 + 𝛽(< 𝑥(𝑥<
• Original model(target model) : Random Forest

• Fit XGB model to residuals in test data

• Diagnose results from second model using 
– Variable importance
– PDP and ICE Plots
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Results of fitting XGB model to residuals from RF target model
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𝑓 𝑥 = 𝛽.𝑥. +⋯+ 𝛽E𝑥E + 𝛽F𝑥F0 + 𝛽G𝑥G0 + 𝛽.(𝑥.𝑥( + 𝛽0;𝑥0𝑥; + 𝛽.0 𝑥.𝑥0 + 𝛽(< 𝑥(𝑥<

RF Target Model

Predictive Performance

Combined performance after 
fitting XGB to Residuals

Predictive Performance

Very poor performance in test 
data

Diagnosing reasons for poor performance of RF

• Variable importance analysis
of XGB Residual Model 

• Possible explanation:

• Interaction term 𝒙𝟏𝒙𝟒 not captured well

• Simulation case à confirms truth

• In practice, have to dig deeper to verify

X4 and X1 show up as important in 
the residual model

MSE R-Squared
Train 1.009 0.890
Test 3.481 0.617

MSE Rsquared

Test 1.356 0.851
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Results of fitting XGB model to residuals from RF target model (cont’d)

𝑓 𝑥 = 𝛽.𝑥. +⋯+ 𝛽E𝑥E + 𝛽F𝑥F0 + 𝛽G𝑥G0 + 𝛽.(𝑥.𝑥( + 𝛽0;𝑥0𝑥; + 𝛽.0 𝑥.𝑥0 + 𝛽(< 𝑥(𝑥<

Digging deeper into interactions …

Unscaled H-statistics
X1 - X4 1.0601
X2 - X3 0.3775
X0 - X1 0.1600
X0 - X2 0.1588
X1 - X8 0.0782
X5 - X7 0.0563
X2 - X4 0.0563
X1 - X7 0.0512

H-stats for leftover 
interactions

rf+xgb ---2d-PDP of X1 – X4 rf+xgb ---2d-PDP of X2 – X3

2D-PDPs show leftover Interactions from 
RF model for x1-x4 and x2-x3
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Supervised partitioning of residuals
• Goal

‒ Identify local regions in feature space where target model has poor 
fit.

‒ Identify the root cause of poor performance
‒ non-captured non-linearity, interaction effects, etc. 

• Strategy
– Fit regression tree → |𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠|
– Identify: 

– Leaf nodes with high error ( MAE, MSE, log-loss, etc.)
– Determine if high error is within expected noise or not
– If not, determine the causes (features contributing to this)

• Diagnostics for last two steps
‒ Identify features and splits along the path of node with error 
‒ Use tests of hypothesis (informally) to determine if error is high
‒ Examine which of the features in the splits and their interactions are 

important

58

Partition into Local Regions
Using Regression Tree Supervised 

by Absolute Residuals

Identify Regions with high 
“error”

Conduct diagnostics to 
determine if this within the 
range of expected noise or 

outside and what contributes to 
the noise

Residuals



Fitting decision tree in our example
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• Multiple splits on X1 and X4 à hint that their effect might not be captured correctly. 
• X9 and X2 show up in the splits as well.

• Leaf nodes #3, #7, #40, #37, #11 and #13 are among the nodes with highest MAE. 
• We dig deeper into nodes #3 and #13 in the next slide.

𝑓 𝑥 = 𝛽.𝑥. +⋯+ 𝛽E𝑥E + 𝛽F𝑥F0 + 𝛽G𝑥G0 + 𝛽.(𝑥.𝑥( + 𝛽0;𝑥0𝑥; + 𝛽.0 𝑥.𝑥0 + 𝛽(< 𝑥(𝑥<



df sum_sq mean_sq F PR(>F)
C(X9) 1 1170 1170 405.8 1.91E-89
C(X4) 2 206.5 103.3 35.82 2.93E-16
C(X1) 2 125.6 62.81 21.79 3.51E-10

C(X1):C(X4) 4 11931 2983 1035 0.00E+00
C(X4):C(X9) 2 18.1 9.048 3.139 4.34E-02
C(X1):C(X9) 2 6.515 3.258 1.13 3.23E-01

Residual 22431 64658 2.883 NaN NaN
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ANOVA tables for leaf nodes #3 and #13

ANOVA Table for Node 13

df sum_sq mean_sq F PR(>F)
C(X4) 1 242.266 242.266 76.785 2.04E-18
C(X1) 1 58.352 58.352 18.494 1.71E-05

C(X1):C(X4) 1 7011.095 7011.095 2222.121 0.00E+00
Residual 22441 70804.415 3.155 NaN NaN

ANOVA Table for Node 3

a

• X9, X1 and X4 are the split variables that create leaf 
node #13. 

• X9: high mean squared and low p-value. Its main effect 
is not captured

• The same for X1*X4. The interaction effect is not 
captured

• X1 and X4 are the split variables for leaf node #3.
• X1*X4: high mean squared and low p-value
• The interaction effect is not captured
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Unsupervised analysis of residuals: 
Examining top p% absolute residuals
• Goal

‒ Identify the differences in predictors corresponding to top 
residuals and the rest

• Strategy
– Pick observations corresponding to top p% |𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙|
– Examine the change in distribution for each feature between 

worst p% and the rest using a metric like PSI
– Pick the features with high PSI
– Study the patterns in the residuals for these features

• Comment
– Particularly useful when number of features is large

61

Partition the sample points 
to top p% absolute residuals 

and the rest 

Compare the distribution for 
each feature between these 

samples and the rest

Study residual patterns for 
most important features

Residuals
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Unsupervised partition using same simulation example

Feature X1 X4 X3 X9 X2 X8 X0 X6 X7 X5
PSI Valuses 1.110 1.078 0.109 0.093 0.074 0.035 0.018 0.017 0.013 0.007

X1 and X4 are important 
Table of PSI measure for each feature

Comparison of histograms for each feature for high residual samples and the rest of data

Clear shift in histograms for X1 and X4.                   
Also, some shift for X2, X3 and X9.Results for top p = 5% of the residuals

𝑓 𝑥 = 𝛽.𝑥. +⋯+ 𝛽E𝑥E + 𝛽F𝑥F0 + 𝛽G𝑥G0 + 𝛽.(𝑥.𝑥( + 𝛽0;𝑥0𝑥; + 𝛽.0 𝑥.𝑥0 + 𝛽(< 𝑥(𝑥<
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Diagnostics: Examine residual plots for leading features (X1, X4, X3, 
X9)

Interaction between X1 and X4
is noticeable

Quadratic pattern between X9 and the residuals



Generalizability:
Model performance on unseen data
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Generalizability to out of distribution data

• Development, P	(.) vs. Production, Q	(.)

• Covariate drift

• Concept drift

65

𝑃 𝑥, 𝑦 ⇔
?
𝑄 𝑥, 𝑦

𝑃 𝑦 𝑥 == 𝑄 𝑦 𝑥
𝑷 𝒙 ≠ 𝑸 𝒙

𝑃 𝑦 𝑥 ≠ 𝑄 𝑦 𝑥



Performance with unseen data
• Extrapolation: Test data at inference time is totally outside of the training envelope for all/some features

‒ Beyond the tails of (one/more than one) feature
‒ Separate cluster

• Simulation study
• 𝑓 𝒙 = 𝛽(𝑥( +⋯+ 𝛽I 𝑥I + 𝛽J 𝑥(𝑥0
• X1 and X2 simulated from clusters
• X3, X4, X5 are from Gaussian distribution
• 𝛽( = 0.5, 𝛽0 = 0.3, 𝛽; = −0.9, 𝛽< = 1.2, 𝛽I= −1, 𝛽J = 0.1
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Performance of XGB and FFNN models for different held out test clusters (1)
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XGB

FFNN

XGB FFNN
Train MSE 0.967 1.003
Valid MSE 1.055 1.022
Test MSE 1.503 1.186

𝑓 𝑥 = 0.5𝑥# + 0.3𝑥% − 0.9𝑥& + 1.2𝑥? − 𝑥' + 0.1𝑥#𝑥%

interpolation

• XGB due to its piecewise constant nature 
interpolates accordingly and results in 
larger MSE

• FFNN interpolates correctly since true 
underlying function is linear

• Slight under-estimation for other 
covariates in both algorithms

• Observed       True 



Performance of XGB and FFNN models for different held out test clusters (2)
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XGB

FFNN

XGB FFNN
Train MSE 0.938 1.016
Valid MSE 1.047 1.007
Test MSE 28.390 5.773

extrapolation

𝑓 𝑥 = 0.5𝑥# + 0.3𝑥% − 0.9𝑥& + 1.2𝑥? − 𝑥' + 0.1𝑥#𝑥%

• Over-estimation in all 
covariates

• XGB estimates a flat effect of 
X1 on the tail

• XGB performs worse than 
FFNN as the true functional 
form is linear

• Observed
• True 



Uncertainty quantification
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Uncertainty in model predictions
• We should measure model performance beyond simply using accuracy  measures such as (MSE, AUC, etc.

• Three major sources of uncertainty
– Noise in the data: large noise in data causes uncertainty in predictions
– Data sparsity: overall low observations or insufficient observations in certain regions of data
– Mis-specified model: unaccounted for effects

• In linear regression, uncertainty is quantified with prediction intervals computed under the model 
assumptions

• In ML models. we want to construct such intervals without any distributional assumptions
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Prediction interval
• Given training data 𝑍& = 𝑋&, 𝑌& &'(

? and error level 𝛼, we 
want interval C 𝑋?K(, 𝑍(…? such that

𝑃 𝑌?K( ∈ 𝐶 𝑋?K(, 𝑍(…? ≥ 1 − 𝛼

• Wider prediction interval → less reliable prediction

• Quantification of uncertainty can be done using Conformal 
Prediction to produce distribution free prediction interval

• Based on theory: given set of exchangeable real numbers 
𝑠(, … 𝑠?K(, where 𝑠& = g(𝑧&),

𝑃 𝑟𝑎𝑛𝑘 𝑠?K(; 𝑠(, … 𝑠? ≤ (𝑛 + 1)(1 − 𝛼) ≥ 1 − 𝛼
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Conformal prediction
• Relies on a pre-defined conformal score function 𝑆()

• Given a trained model !𝑓, compute conformal scores on a hold out dataset 𝑆& = 𝑆 𝑥&, 𝑦&, !𝑓

• Get calibrated 𝛼 quantile on scores 𝑆& given as o𝑞M

• Prediction interval for 𝑥NOPN given as 𝐶 𝑥NOPN = {𝑦: 𝑆 𝑥NOPN, 𝑦, !𝑓 ≤ o𝑞M}

Given the exchangeability assumptions, it is guaranteed that

𝑃 𝑦ghig ∉ 𝐶 𝑥ghig ≤ 𝛼
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Conformal prediction
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• Prediction using quantile regressions: 

• Fits two quantile regression on training data and 
computes interval based on these

• no guaranteed coverage for finite samples

• Split conformal prediction(SCP): 

• 𝑆 𝑥, 𝑦 = 𝑦 − !𝑓 𝑥

• equal length, not adaptive intervals

• Conformal Quantile Regression(CQR): 

• 𝑆 𝑥, 𝑦 = max( !𝑓(
)
𝑥 − 𝑦, 𝑦 − !𝑓("()

𝑥 )

• adaptive and provides coverage guarantee

Prediction interval using quantile regression

Prediction interval SCP

Prediction interval CQR



Robustness: 
Assessing stability of results to small perturbations
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History of model robustness
• There has been a long focus on “data robustness” in statistical modeling and data analysis

– Robustness to outliers, influential points, etc.
– Rank based methods, robust techniques (trimmed mean, median, influence functions, etc.).

• Notion of “model robustness” in parametric models
– Model misspecification
– Degrees of freedom

• Renewed interest in ML literature
– “Stability of machine learning algorithms” – W.Sun, et al.
– “Stability and generalization of learning algorithms that converge to global optima” – Z.Charles, et al. 
– “Under-specification presents challenges for credibility in modern machine learning” - A. D’Amour, et al.
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Concept of model robustness

Robustness

Stable to small 
perturbations in the 

covariate space

Change in model to 
changes in observed 

response
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• Over-fitted models have high generalizability error

• This is usually measured as the gap between training and 
testing error.

• As a consequence of over-fitting a model may show large 
variability in predictions due to

• Small perturbations in the X-space

• Small changes in the Y-space

• Goal of robustness study:

• Quantify stability of model to small perturbations

• Identify points/regions which contribute to lack of 
stability in model. 

• Understand whether the lack of robustness is due to 
sensitivity of model to different covariates or simply 
over-fitting to noise in these regions.  



X space perturbations – worst case analysis
Key assumption: Robust model is able to maintain stable outputs against small 
perturbations in input.

• Worst case perturbation
– Look at small neighborhood of given observation
– Find worst case prediction on perturbing observation in that neighborhood
– Define metrics based on the worst case scenario. 

– RoMSE = (
)
Σ&'() max

$*∈1*
𝑓 𝑥& + 𝑑& − 𝑦& 0

– RoAUC = 𝐴𝑈𝐶 (𝑓)∗ A! 𝑓)∗∗ #$A! , {𝑦)}),
– 𝑓)∗ = m𝑖𝑛

,!∈9!
𝑓(𝑥) + 𝑑)), 𝑓)∗∗ = m𝑎𝑥

,!∈9!
𝑓(𝑥) + 𝑑))

• Constrained optimization problem
– White-box: assumes knowledge of model architecture and parameters
– Black-box: only requires able to call model and generate prediction on perturbed inputs. 

• True response is not known, so we compare to original response

• Looking at worst case scenario exaggerates drop in performance
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Average measures of robustness
Key assumption: Robust model is able to maintain stable outputs against small 
perturbations in input.

Multiple random perturbations

• Randomly sample within a small perturbation region 

• Look at summary statistics of the deviation 
– ]𝑦 𝑋) + 𝛿)! − ]𝑦 𝑋) : captures variability in prediction
– ]𝑦 𝑋) + 𝛿)! − 𝑦): combination of true error and prediction variability 

• Potential summaries include mean, median, quantile, maximum, standard 
deviation, IQR
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𝑟𝑃𝑃𝑉& =
Σ/'(R o𝑦&/ −o𝑦& 0

𝐾
𝐴𝑟𝑃𝑃𝑉 =

1
𝑁
Σ&'() 𝑟𝑃𝑃𝑉&

Deviance for each 
perturbation k of an 

observation i

Summarize the deviance  observation 
i: root Perturbed Prediction Variance

Measure of robustness for 
given model and budget

o𝑦&/ −o𝑦&

• Alternatively, compute MSE on perturbed data and corresponding predictions  and obtain average of perturbed 
MSE #

1
Σ+

#
C
]𝑦)+ − 𝑦) %



Choice of neighborhood

• All tests of robustness rely on local perturbations

• Budgets control local neighborhood
– Larger budgets → large neighborhood
– Small budget → small neighborhood

• Budgets can be expressed as percentage 𝑏%, where it refers 
to a percentage on range, IQR, standard deviation, etc.
– Example: perturb observation by 2% standard deviation

• When perturbations are large, response should change. 
Hence comparing to original prediction/response only 
makes sense for small budgets. 

• At larger budgets these metrics cannot assess model 
stability. 
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Perturbations strategies
• Continuous variables

– Model based perturbation
– Add noise following Gaussian 

distribution (budget is a 
percentage of std dev)
– Correlated noise

respecting variable 
associations

– Independent noise
– Add noise from Uniform 

distribution( budget is 
percentage or range/IQR)

• Discrete variables
– Perturb in original scale

– Round up perturbed 
variables to avoid invalid 
values

– Quantile based perturbation
– Convert values to quantile 

scale
– Perturb and round up to 

nearest value
– Invert to original value
– Helps to perturb values 

for long tailed distribution

• Categorical variables
– Marginal perturbations (perturb each 

categorical variable independently)
– With some probability change the 

category using user-defined transition 
matrix or transition matrix created from 
counts in the dataset

– Joint perturbations respecting sense of 
local perturbations
– Use some pseudo distance method  to 

define distance between the categorical 
variables of two observations

– Perturb to a combination that occurs in 
the local neighborhood based on the 
pseudo-distance measure. 
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Generalized degree of freedom (DF) as measure of 
robustness• In linear models, model complexity is measured through the number of variables in the model (DF)

– Linear model : 𝑌 = X 𝛽 + 𝜖
– '𝛽 = 𝑋+𝑋 ,𝑋+𝑌 and )𝜇(𝑌) = 𝑋 𝑋+𝑋 ,𝑋+𝑌
– DF: 𝒑 = 𝑡𝑟 𝐻 = ∑- ℎ-- = ∑-

./0 1!
.1!

, 𝐻 = 𝑋 𝑋+𝑋 2,𝑋+

– Therefore DF≡ sum of sensitivities of fitted values to observed values. 

• Generalized Degrees of Freedom (GDF)(Ye 1998): 
– 𝐷 𝑀 = ∑- ℎ-3 for model M, where

– ℎ-3 = .4" /0(6!)
.6!

• Compute DF by Monte Carlo method
– For 𝑡 = 1,… , 𝑇:

– Generate perturbations Δ8 = (𝛿8,, … , 𝛿89) from independent 𝑁 0, 𝜏:
– Evaluate )𝜇(𝑌 + Δ8) based on the modeling procedure 𝑀.

– Calculate ?ℎ-3 as the regression slope from )𝜇 𝑌- + 𝛿8- = 𝛼 + ?ℎ-3𝛿8- , 𝑡 = 1,… , 𝑇
– Estimate 𝐷(𝑀) by A𝐷 𝑀 = ∑- ?ℎ-3

• High computational complexity due to multiple(T) refit of model based on the perturbations. 

• Strong relationship with train and test gap
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Illustration: Assessing robustness of two XGB models
• Illustration on DC Bike Share data 

• Two models fitted to bike share data:
– tuned XGB model (hpo) 
– overfitted XGB model (oft) 

• Compute leverages on each point
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Model Train mse Test mse Mse gap ArPPV GDF

Hpo 0.117 0.186 0.069 0.56                                                                                                                         1674.07

Oft 0.066 0.204 0.138 0.79 3551.70

Orange: points with hstat> 0.8

Hpo Oft

Temp vs hr plots colored by high leverage points

• Over-fitted (OFT) model has many high leverage 
points indicating that it is a more complex model

• High leverage occur mostly in the outer regions 
of the data envelope

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset


Assessing robustness of two XGB models (contd.)
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Model Train mse Test mse Mse gap ArPPV GDF

Hpo 0.117 0.186 0.069 0.56                                                                                                                         1674.07

Oft 0.066 0.204 0.138 0.79 3551.70

Orange: points with rPPV > 1.5

Histogram of rPPV metrics

Y vs temp colored by high rPPV values 

Hpo Oft

• Over-fitted model (oft) has a thick and long tail on 
the summary measures of instability to 
perturbations (rPPV)compared to tuned model

• In tuned model (hpo), high rPPV points are located 
at regions where the counts sharply change with 
hour. Thus the high values can be attributed to 
sensitivity

• In oft model, high rPPV points are present during 
nearly all hours of the day showing a general lack of 
stability. 

• Illustration on DC Bike Share data 
• Two models fitted to bike share data:

• tuned XGB model (hpo) 
• overfitted XGB model (oft) 

• Examine robustness when one pertur variable 
temperature with budget 2 % std dev.

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset


Summary
• We have looked at multiple causes for model weakness

– Not capturing true effect
– Missing interactions
– Over-fitting
– Data outside known envelope

• We have shown multiple methods to capture 
– Model weakness due to missed out true effects 
– Lack of uncertainty in model predictions
– Lack of stability in fitted response

• Ongoing research area
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