
Workshop on Machine Learning and Application

Module 1: Algorithms, Training, and Tuning

March 24, 2023
Vijay Nair
Joint with Anwesha Bhattacharyya and Rahul Singh

Advanced Technologies for Modeling (AToM) Group
Corporate Model Risk

Outline
• Machine Learning: Overview

• Background

• Algorithms
– Architecture
– Training
– Tuning
– Examples

2

References
Overview
• Hu, L., et al. (2021) Supervised Machine Learning Techniques: An Overview with Applications to
Banking, International Statistical Review, Volume 89 (Issue3) pages, p.573 - 604.

• Breiman, L. (2001b). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the
author). Statistical Science, 16, 199-231.

Algorithms
• Breiman, L. (2001a). Random Forests.Machine Learning, 45, 5-32.
• Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of
Statistics, 29, 1189-1232.

• Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco.

• Goodfellow, I., Bengio, Y., & Courville, A. (2015). Deep Learning. Cambridge, MA: MIT Press.

Explanation Techniques
• Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in
neural information processing systems, (pp. 4765-4774).

• Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " Why should i trust you?" Explaining the predictions of
any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, (pp. 1135-1144).

• Song, E., Nelson, B. L., & Staum, J. (2016). Shapley Effects for Global Sensitivity Analysis: Theory and
Computation. J. Uncertainty Quantification, 4(1), 1060-1083.

3

https://journals.scholarsportal.info/browse/03067734/v89i0003

Machine Learning and Artificial Intelligence
§ Machine Learning:

– Term coined by Arthur Samuel (IBM) in 1959
– ML gives "computers the ability to learn without being explicitly programmed”
– Study and construction of algorithms that can learn from data, identify features, recognize patterns,

make predictions, and take actions
– A key pathway to AI

§ Artificial Intelligence: concerned with making computers behave like humans
– Term coined by John McCarthy (MIT) around 1956
– Study of “ intelligent agents” [or systems] that “perceive” the environment and take actions that

maximize [probability] of success [to achieve] some goal
– Long history: formal reasoning in philosophy, logic, …
– Resurgence of AI techniques in the last decade: advances in computing power, computing and data

architectures, sizes of training data, and theoretical understanding
– Deep Learning Neural Networks: At the core of recent advancements in AI, specifically for certain

classes of ML tasks (Reinforcement L and Representation L)

4

Machine Learning Tasks

• Data with “labels”
• Regression and classification

• Unsupervised Learning
• Data with no labels
• Discover patterns or structure in the data (anomalies, clusters, lower-dimensional representation)

• Reinforcement Learning
• Experiment and exploit to make “optimal” decisions based on reward structure

• Others
• Semi-supervised, Positive-Unlabeled Learning, …
• Representation Learning
• Transfer Learning

5

Supervised Learning: Statistics vs ML paradigms
• Leo Breiman (2001) Statistical Modeling: The Two Cultures, Statistical Science

• Two paradigms: data model and algorithmic model

• Traditional statistics
– Goal: “understand” the generative model
o Estimate model parameters and assess uncertainty
o Identify key drivers and input-output relationships
o Extensive tools and diagnostics developed over time
o Parametric models à easier to interpret

• Machine Learning
– Goal: best predictive performance … generalization assessed on hold-out data

o Algorithmic approach and automation of model building
à variable selection, feature engineering, model training

o Large samples
o Not much focus on CI, hypothesis testing, …

– No intrinsic interest in the data generation process (even if there’s such a thing!)

• For regulated industries and safety-critical applications:
– Model interpretability is important 14

sample
Population

Applications in Banking

7

Areas:
• Credit Risk: Predicting losses – customers not

repaying debts or loans: Mortgages, Auto-Loans,
Student Loans, Credit cards, Small business loans, …

• Credit Decisions: Activities related to loan
applications: credit scoring, marketing, collections, …

• Revenue and Transactions: Interest, servicing fees,
deposits, withdrawals, electronic payments, etc.

• Financial Crimes: Fraud detection, Money laundering
• Fair Lending: Ensuring fair treatment of customers
• Text and speech: Conversations, complaints, emails,

voice messages, chat-bots for assisting customers and
employees

Statistical and econometric techniques
• Dimension reduction; clustering, anomaly detection
• Parametric modelling for regression and classification
• Semi- and non-parametric regression models
• Regularization: Lasso, ridge, …
• Survival analysis; Time series forecasting

ML/AI techniques
• Auto-encoders à Dimension reduction
• Isolation Forest à Anomaly detection
• Supervised ML: Support vector machines; Random forests;

Gradient boosting; Neural networks (FF and Deep NNs)
• Natural language processing of Text Data à Deep NNs
• Conversational AI: Chatbots, …

Computing Environment
• Python, C++, Java, R, SAS, and R
• Open Source Libraries, Tensorflow, PyTorch
• CPU and GPU Clusters, Cloud

Natural Language Processing (NLP)
• Methods, algorithms, and systems for analyzing “human language” data (text, speech, conversations)

– Very challenging …
• Interdisciplinary area that combines computer science, statistics, optimization, AI, linguistics, logic …

– Earlier version à computational linguistics, speech recognition, …
• Evolution:

– Rule-based, statistical …now largely driven by deep neural networks
• Diverse applications

Machine Translation
Text
Summarization

Text classification Sentiment Analysis

Chatbots
• Alexa and Siri-like
• Conversational AI

Natural Language
Generation

General:
• Advent of “Big Data”
ü New sources of data: social media, sensor networks, intelligent systems, …
o Text, conversations, …

• Advances in computing and data storage technologies
ü Infrastructure for data collection, warehousing, transfer, and management
ü Efficient and scalable algorithms and associated technologies for analyzing large datasets
ü Open-source algorithms
ü Cloud storage and computing
à Democratization of Data Science

Specific:
• Availability of large datasets and fast algorithms

à flexible modeling … move away from restrictive parametric models
• SML model:
Ø Improved predictive performance
Ø Semi-automated approach to feature engineering and model training à ideal for Big Data

• New data sources and computing technologies open up new opportunities
Ø Text, speech, images, …
Ø More timely information and decision making

Opportunities with ML

9

Structured data

Obs id 𝒙𝟏 𝒙𝟐 … 𝒙𝒑 𝒚

1

2

…

n

10

• Structured or tabular data with response/label
– n observations
– p covariates
– static, time series, repeated measurements, …

• Examples in banking:
• Banking transactions over time

• Response: deposit and withdrawals (times and amounts)
• Covariates: account holder’s attributes, account type, location,

etc.

• Historical loan payment data
• Response: default or not (binary 0 or 1)
• Covariates – amount of original loan, balance over time, credit

rating over time, delinquency status, etc.

Estimation and loss functions
• Continuous response:Y(𝑥) = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑝𝑢𝑡𝑠, 𝑛𝑜𝑖𝑠𝑒
• Binary response: 𝒀(𝒙) = 𝟎 𝒐𝒓 𝟏;

– Let 𝜇(𝑥) = 𝐸(𝑌 𝑥)
– Model is: 𝑔 𝜇(𝑥) 𝑚 = 𝑓 𝒙
– Here 𝑔 ⋅ is the link function

Goal:
Estimation of 𝑓 𝒙
Prediction: given 𝒙∗ , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑓(𝒙∗)

How to estimate 𝒇 𝒙 ?
– Given data {𝑦", 𝒙", 𝑖 = 1, … , 𝑛},
– Find E𝑦 = F𝑓(𝑥) that minimizes some loss/cost.
– Loss functions are specific to the learning task.

11

Common loss functions

Continuous response
• Mean square loss : #

$
∑"(𝑦" − 𝑦")%.

• MAE
• Quantile loss

Binary Response
• Logloss:
• #

$
∑" 𝑦"log𝑦" + 1 − 𝑦" log 1 − 𝑦"

Bias variance tradeoff and over-fitting
• All learning algorithms come with hyper-parameters (HP) which

control complexity of the algorithm.

• Examples
– High dimension in linear/logistic regression : Large number of

predictors
– Degree of polynomial in polynomial regression
– Number of knots in splines
– Tree based ensemble learners : depth, number of trees, learning

rate, minimum samples per leaf
– Neural Network : number of layers, layer sizes,

• Complexity of a model is related to bias-variance trade-off
– Underlying model : 𝑦 = 𝑓⋆ 𝑥 + 𝜖

– 𝐸 F𝑓 − 𝑓⋆
%
= 𝑉𝑎𝑟 F𝑓 + 𝐵𝑖𝑎𝑠 𝐸 F𝑓 , 𝑓⋆

%

– Very complex (over-fitted) model – low bias, high variance
– Simple (under-fitted) model – high bias, low variance

12

-- training error
− validation error

Regularization
• Regularization: Applying penalty to loss function to

penalize for model complexity
𝑹𝒆𝒈𝒖𝒍𝒂𝒓𝒊𝒛𝒆𝒅 𝒍𝒐𝒔𝒔

= 𝑳𝒐𝒔𝒔 𝒚, 𝒙, 𝜽 + 𝝀×𝑷𝒆𝒏𝒂𝒍𝒕𝒚(𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚)

– Penalty parameter 𝜆 is treated as hyper-parameter

– Tune 𝜆 to obtain optimal model that minimizes hold-out

validation error

• Objective: force some parameters to be small or 0
thereby reducing model complexity without
compromising on performance too much.

• Result : Reduce over-fitting and generalizable model
performance

13

• L0: 𝝀 𝜽 𝟎, 𝜽 𝟎 = 𝚺𝒋𝑰 (𝜽𝒋 ≠ 𝟎)
• Exact sparsity
• Non-convex, NP hard, not computationally

tractable
• L1: 𝝀 𝜽 𝟏, 𝜽 𝟏 = 𝜮𝒋|𝜽𝒋|

• Exact sparsity - selection
• Convex

• L2: 𝝀 𝜽 𝟐, 𝜽 𝟐 = 𝜮𝒋𝜽𝒋𝟐
𝟏
𝟐

• Convex, fast and efficient
• Close to 0 but not exact sparsity
• Effective in presence of multi-collinearity.

Overview of statistical approaches to regression
𝑔 𝐸 𝑦(𝑥) = 𝑓(𝑥)

• Parametric
– 𝑓 𝑥 is modelled as an explicit function of 𝑥 and some parameter 𝛽
– 𝛽 is finite dimensional
– Examples

– Linear regression, logistic regression, polynomial regression

• Semi-parametric
– 𝑓(𝑥) has a fixed dimensional component and an infinite dimensional component
– Example: Cox proportional hazard models

• Non-parametric
– 𝑓(𝑥) is general – infinite dimensional

14

Overview of statistical approaches – continuous response

Parametric modelling
Linear model with continuous response 𝑦 = 𝑋𝛽 + 𝜖
• Assumptions

– Linear
– Constant variance of noise.

• Solved through least square approaches
– Minimize 𝑌 − 𝑋𝛽 %

%

– F𝛽 = 𝑋'𝑋 (#𝑋'𝑦
– Requires 𝑛 > 𝑝
– Inference (hypothesis testing) – requires normality assumptions

• Non-linear with continuous response
– Polynomial regression 𝑋%, 𝑋)
– Linear model with interactions y = 𝛽* + 𝛽#X# + 𝛽%X% + 𝛽)X) + 𝛽#%𝑋#𝑋% + 𝛽#%)𝑋#𝑋%𝑋) + 𝜖
– Polynomial with interactions y = 𝛽* + 𝛽#X#% + 𝛽%X%) + 𝛽)X) + 𝛽#%𝑋#𝑋% + 𝛽#%)𝑋#𝑋%𝑋) + 𝜖

15

Overview of statistical approaches – binary response
• Binary response

– Linear regression generates out of range values
– Try to model the probability p(x) = 𝑃𝑟𝑜𝑏 𝑦 = 1 𝑋
– Assume 𝑦|𝑥 ∼ 𝐵𝑒𝑟(𝑝 𝑥)

• Logistic Regression
– 𝑙𝑜𝑔𝑖𝑡 𝑝 𝑥 = 𝑙𝑜𝑔 & '

()& '
= 𝑓 𝑥

– 𝑓 𝑥 : linear in x

• Probit Regression
– Φ)(𝑝 𝑥 = 𝑓 𝑥
– Φ : cdf of normal distribution. Scales 𝑅 → [0,1]
– 𝑓 𝑥 : linear in x

• Link functions
– Φ)(𝑝 𝑥 , log & '

()& '

16

Generalized Linear Models
• Distribution of y
• 𝐸 𝑦 𝑥 = 𝜇 𝑥
• Link function : g 𝜇 𝑥 = 𝑓 𝑥
• 𝑓 𝑥 : linear in 𝑥

Splines
• Piecewise functions used to model effects of each variable

smoothly.

• Examples:
– Linear splines (derivatives not continuous at knots)
𝑓 𝑥 = 𝛽* + 𝛽(𝑥 + Σ+,(- 𝑏+ 𝑥 − 𝜉+ . , 𝜉(< 𝜉/ < ⋯𝜉-

– Truncated power basis splines of order 𝑞 (𝑞-1 derivatives
continuous)
𝑓 𝑥 = 𝛽* + 𝛽(𝑥 + ⋯𝛽0𝑥0 + Σ+,(- 𝑏+ 𝑥 − 𝜉+ 0

. , 𝜉(< 𝜉/
< ⋯𝜉-

– B-Splines
– 𝑓 𝑥 = Σ+,(- 𝑏+𝐵+1(𝑥)
– 𝐵+1(𝑥) : 𝑘23 spline of degree 𝑑
– Defined through recursive relations with
– 𝐵+* 𝑥 = 1 𝑖𝑓 𝜉+ ≤ 𝑥 < 𝜉+.(
– 𝐵+ 4.(𝑥 = 𝛼+ 4.(𝑥 𝐵+4 𝑥 + (1 − 𝛼(+.() 4.(𝑥)
𝐵(+.()4 𝑥

– Efficiency in computation
– Any spline function can be expressed as linear combination of

b-splines 17

linear cubic

B-splines

Generalized Additive Models (GAMs)
Hastie and Tibshirani

• 𝒈 𝑬𝒀(𝒙) = 𝒇 𝒙 = 𝒇𝟏 𝒙𝟏 + 𝒇𝟐 𝒙𝟐 + …+ 𝒇𝒑 𝒙𝒑

• 𝒇𝒋 𝒙𝒋 : unspecified non-parametric functions

• Usually assume they are smooth

• Each 𝑓/ 𝑋/ is estimated nonparametrically

• Can use splines or some other semi- or nonparametric structures

• Example:
F𝑓 𝑋 = Σ/0#

1 Σ20#
3 / 𝛽/2𝐵/24(𝑋/)

• Number of knots and order define complexity of model

18

Regression Trees

19

• Regression tree partition the feature space into a set of
rectangles and fit a simple model (e.g., constant) in each one.

• Advantages:
– Fast, intuitive
– Able to handle both numeric and categorical data
– Robust to outliers in predictors
– Model interaction and nonlinearity automatically (little data

transformation)

• Disadvantage:
– High bias for shallow trees, for example trying to model linear

relationships
– Unstable, high variance for deep trees. Small change in data

can result in a completely different tree

Outline

• ML algorithms
• Tree based ensemble learners
oRandom Forest
oGradient Boosting
• Feed Forward Neural Network
• Hyper-Parameter tuning
• Reproducibility
• Advanced neural network architecture

20

Ensemble algorithms

• Improve performance by
combining the outputs of several
individual predictors.

• Examples:
• Bagging
• Boosting
• Model Averaging
• Majority Voting
• Ensemble Stacking

• Mostly bagging and boosting
algorithms use tree-based
learners.

21

Bagging
• Bagging: bootstrap aggregating (Breiman in 1994)

– "improvements for unstable procedures" (deep decision tree)

• Algorithm:
– bootstrap sample at each iteration 𝑖, 𝑖 = 1, 2, … , 𝑛.
– Fit base learner to bootstrap sample à]𝑓7(𝑥)
– Combine base model predictions :

– Averaging (Regression):]𝑓 𝑥 = (
8
∑7]𝑓7 𝑥

– Majority voting (Classification):]𝑓 𝑥 = argmax
+
∑7 𝐼]𝑓7 𝑥 == 𝑘

• Loss functions:

– Loss functions for measuring homogeneity in leaves:

– MSE (continuous)

– Gini-Index/cross-entropy/logloss (binary/multi-class)
• Combining base model predictions reduces variance, making model stable

– More base learners → better prediction, higher computational complexity
– Base learners: low bias high variance

22

Random Forests
• Random Forests (Breiman 2001)

– Bagging and random feature subsampling

• Deep Trees
– Low bias, high variance
– Reduce variance through bagging
– A variant uses sample without replacement

• De-correlate trees
– use random subset of features in each split instead of entire feature set
– Tries to achieve maximum variance reduction

• Typically over-fits the data

• Typical Hyper-Parameters (HP) to be tuned (sklearn)
– N_estimators : number of forests
– Max_depth : maximum depth of the trees
– Min_samples_leaf (MSL): the minimum samples required at each leaf
– Max_features: number of features to consider at each split

23

Boosting
• Boosting is a different type of ensemble algorithm, based on removing bias of a simple learner.
• Given a simple learner, can you improve it to be a strong learner? (Kearns and Valiant 1988)
• Schapire (1989): Yes à by a technique called “boosting”
• Freund and Schapire (1995): AdaBoost for classification

24

• “Base learner”: simple rectangular classification regions at each stage

• Reweighting at each stage – more weight to data that are misclassified
• Fit an additive model (ensemble)

Gradient Boosting
• Breiman (1998+): Boosting à optimization algorithm

• Friedman (2000+): Extended concept to gradient boosting (gradient descent)

• Loss function to minimize: 𝐿(𝑦, 𝑓).
– squared error loss 𝑦 − 𝑓 / for regression

– deviance 𝑦𝑓 − log 1 + 𝑒9 for binary classification (𝑓 is the log-odds) (deviance = logloss)

– Other loss functions: absolute error loss, partial likelihood, etc

• Find the prediction function 𝑓(𝑥) that minimize the total loss ∑7,(: 𝐿 𝑦7 , 𝑓 𝑥7 .

– 𝑓(𝑥) is optimized in an additive, stage-wise way:

– 𝑓 𝑥 = 𝑇* 𝑥 + ∑;,(< 𝜂;𝑇;(𝑥), where 𝑇*(𝑥) is baseline (e.g., overall mean in regression).

– In each stage 𝑚, update 𝑓(𝑥) in the direction 𝑇;(𝑥) where the total loss decreases, for a step size/learn rate of 𝜂;.

– Each base learner 𝑇; 𝑥7 is fit to the negative gradient (gradient descent) from the previous iteration

– 𝑇; 𝑥7 = − =>('#,@#)
= A9$%& '#

25

Gradient Boosting
• Stochastic gradient boosting (Friedman 1999):

– fit each tree with a subsample instead of the entire data.
– can be more robust and lead to less overfitting.

• Hyper-Parameters (HP):
• number of trees,
• learn rate, tree
• depth, …

• Implementation:
• Scikit learn: GradientBoostingClassifier and

GradientBoostingRegressor
• R: gbm package
• Spark: mllib library
• H2o: h2o.gbm

• Popular variations
• XGBoost
• LightGBM
• CatBoost

26

Illustration of GBM for continuous regression

XGBoost
• XGB = Extreme Gradient Boosting (Chen and Guestrin 2016) - a variant of GBM that uses second order Hessian for optimizing
• XGBoost adds a penalty term to the loss function

!
!"#

$
𝐿 𝑦!, 𝑓 𝑥! +!

%"#

&
Ω 𝑇% 𝑥

to control overfitting.

– For example, Ω 𝑇 = 𝛾 𝑇 + #
'
𝜆∑(𝑤(', where |𝑇| is the number of terminal nodes in the tree and 𝑤(is the fit in terminal node 𝑗.

– 𝛾 is a pruning parameter: any split with the improvement below 𝛾 is pruned.
– 𝜆 acts like a shrinkage parameter: the prediction in each tree node is shrunk

– w) = −
*!

+!,-
, where 𝐺(= ∑!∈/! 𝑔! , 𝐻(= ∑!∈/! ℎ! are the total gradients and total Hessian in Node 𝑗.

– An L1 penalty (𝛼 ∑(|𝑤(|) can be added as well.
– The trees are built depth-wise.

• XGBoost has several advantages:
– Parallelized, so scalable.
– Penalized, to reduce overfitting issue

• Originally implemented in C++ but it is available in Java, Python, R through APIs. Has Scikit-learn wrapper.
• Hyper-parameters (HP) :

– max_depth, learning_rate (lr_rate),N_estimators (# trees), L1 (alpha),L2 (lambda), min_child_weight, …

27

LightGBM
• Introduces two new concepts (Ke et al, 2017)

– Gradient One-Sided sampling(GOSS)
– At each iteration, keep all observations with large gradients and random subset on instances with smaller gradients.

– Exclusive feature bundling (EFB)
– Bundles up mutually exclusive features.
– Helpful in feature reduction for high dimensional data with large number of 0-1 encoded columns.

• Builds trees leaf-wise

• Hyper-Parameters:
– Lr_rate
– Max_depth
– Num_leaves
– Min_data_in_leaf

• Developed by Microsoft.

• Built in C++, has python and R interface.

28

https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

XGBoost vs LightGBM

• Numerous blogs on comparison

• Similar performance

• LightGBM is faster

• Default option in XGB: grows tree level-wise

• LightGBM grows trees leaf-wise

• Differences in the algorithm may lead to different feature importance
and other diagnostics.

29

Neural Networks: history and inspiration from neuroscience
Wave 1: “Cybernetics”: [1940s-1960s]

– Model of biological function of brain
– 1958 Rosenblatt: Developed “perceptron”, a training

algorithm
– Perceptrons (Minsky and Papert): showed difficulties with

approaches

Wave 2: “Connectionism”: [1980s-1990s]
– From the study of how the brain can form connections
– Central Idea: A network of many simple units can learn

complex patterns.
– The backpropagation algorithm provided an essential

advance in training neural networks.

Third Wave [2006-present]: Deep Learning
– Ability to train neural networks with more layers.
– Able to outperform other ML systems:

– Object recognition in pictures
– Natural Language Processing

30

Input
layer Neuron

(hidden
layer)

Output
layer

Input
layer

Neurons
(hidden
layers)

Output
layer

Feedforward Neural Networks (FFNN):

31

• Activation function: 𝑔 𝑤B𝑥
• Sigmoidal, Hyperbolic Tan, ReLU
• Connection to additive index models:

𝑓 𝒙 = 𝑔 𝑤#𝑥# + …+ 𝑤0𝑥0

• FFNN architecture
• Nodes (Neurons)
• Input, Output, and Hidden Layers
• All nodes connected with others in next layer

• Hyper-Parameters(HP)
• Learning rate
• Number of layers
• Neurons in each layer
• L1, L2, dropout
• batch-size
• activation function…

• Implementation
• Scikit-learn – MLP
• Keras
• PyTorch

Fitting a Neural Network to Data: Learning the Weights
• The weights (and bias) of each neuron are unknown parameters in a NN

• They need to be “learned” from data.

• Need an appropriate cost (loss) function:

– For continuous responses, typically use squared error loss: #
$
∑"(𝑦" − 𝑦")%

– For binary response, typically use cross entropy, or log loss: − #
$
∑" 𝑦"log 𝑦" + 1 − 𝑦" log 1 − 𝑦"

• Choose weights to minimize the cost (loss) function.

32

Optimization: Back Propagation Algorithm
• Gradient descent can be challenging in NNs due to

computation of gradient.

• Initialization:
– Input the data x
– Initialize all weights in the network.

• There is a lot of research into optimization of NNs:
– many other algorithms (Adam, SGD, etc)
– mini-batch training

33

𝑥#

𝑥'

Input
layer Hidden

layer 1

𝑌

Output
layer

𝑥1

Hidden
layer 2

Feedforward
• Feed the data through the network
• Compute the output of each node

based on the current weights

Gradient
• Compute the gradient of the cost

function with respect to the last
hidden layer

Backward propagation
• Work backwards through the network
• Compute the gradient of the cost

function as they depend on the
weights in the lower layers

Update
• Update the weights using gradient

descent
• Return to step 1 “Feedforward”

• Batch gradient descent
– computes gradients of all samples at each iteration

• Stochastic gradient descent
– computes gradient of a single random sample at each iteration

• Mini batch gradient descent
– partitions data and computes gradient of one partition at each iteration

• Variations include
– Adaptive learning rates
– Adding momentum

• Different variations of gradient descent
– Adagrad
– RMSProp
– Adam

34

Different types of gradient descent

Using NNs in Practice
General Usage
• Very flexible. Choices for:

– Structure: Number of Hidden
Layers, Number of nodes on Each
Hidden Layer, Activation Functions
for each Hidden Layer

– Regularization Strategy/ Parameters
– Additional Features: Skip

connections, Batch Normalization,
Dropout, Constraints

– Training/Optimization Algorithms
• Can make grid search difficult

• Much of the literature available gives
advice in the context of
(images/text/speech)

• Not particularly relevant to tabular
data

Training effectively
• Training can be challenging

– Saddle points and local minima can
result in a sub-optimal model.

• Tips:
– Standardize or normalize data (X)

before training. Avoids vanishing
gradient problem.
– Min/Max scaling
– Gaussian standardization

(perform better with large
outliers)

– Batch Normalize hidden layers.
– optimization routine with learning

rate decay (e.g., Adam).
– batch size used in training - smaller

batches can be slow and volatile,
but help escape local minima/saddle
points.

– Use early stopping to determine
number of training epochs.

Overfitting
• NNs are flexible models, with a

(potentially) large number of
parameters, therefore overfitting is a
real concern.

• Strategies to avoid overfitting in
include:
– Multiple narrow layers vs. Single

wide layer
– Weight regularization: Penalizing

large weights in the cost function.
– Dropout: randomly set a fraction of

neurons’ activations to 0 during
training. This forces redundancy of
neurons, and reduces neuron
specialization.

– Early stopping via a validation set.

35

Comparison of ML Algorithms

36

Preprocessing
Robustness to
outliers in input
space

Computational
scalability (large N) Predictive power Smoothness of

response surface Feature engineering
Hyper
parameter
tuning

GBM No, some require
dummy coding

Yes, tree based
methods are

robust to
outliers

Depend on software
implementation. Xgb

oost, LightGBM and
H2O GBM are scalable

Good, often
outperforms

random forest and
neural network in

prediction

The response
surface for tree

based methods are
often jumpy and not
smooth, especially

for small data

Good for manually
created features;

may not be good for
raw features, e.g.,
transaction data,

image data.

Relatively easy

Random
Forest

No, some require
dummy coding

Yes, tree-based
methods are

robust to
outliers

Depend on
software implementa

tion. Scikit learn
random forest, H2O
random forest are

scalable

Good

The response
surface for tree-

based methods are
often jumpy and not
smooth, especially

for small data

Good for manually
created features;

may not be good for
raw features, e.g.,
transaction data,

image data.

Relatively easy

Neural
Network

dummy coding
and

standardization
No

Large neural network
with large data

requires
GPU. Computation

with simple network
or small data is

scalable on CPU.

Good. Best for
image, speech,… Usually smooth

Powerful in feature
engineering with a

variety of deep
neural network

structures.

Complicated

Application to Home Mortgage: Modeling “In-Trouble” Loans

37

Loan origination, current (snapshot) and prediction times

• One portfolio: ~ 5 million observations

• Response: binary = loan is “in trouble” (multiple failures and connections to competing risks)

• 20+ predictors: credit history, type of loan, loan amount, loan age, loan-to-value ratios, interest rates at origination
and current, loan payments up-to-date, etc. (origination and over time)

Modeling framework

Comparison of Predictive Performance: ROC and AUC on Test Data

38

• ML with 22 predictors
• LR model: eight carefully selected variables

o snapshot fico (credit history);
o ltv (loan-to-value ratio);
o ind_financial-crisis;
o pred_unemp_rate;
o two delinquency status variables;
o horizon

How typical is this “lift” in our applications?

Findings from internal study -XGB and FFNN are
competitive and exhibit better model performance across
a variety of functional forms than RF

https://arxiv.org/ftp/arxiv/papers/2204/2204.12868.pdf

https://arxiv.org/ftp/arxiv/papers/2204/2204.12868.pdf

Hyper-Parameter Tuning

39

Tuning of Supervised Machine Learning Algorithms

40

• Hyper-parameter tuning
– Find the best hyper-parameter configuration that gives the best results

• HPs are data dependent
– They need to be tuned based on the particular dataset

• Tuning - search method and a fitting-evaluation method.
– For each HP setting 𝛼, fit the model]𝑓 𝑥; 𝛼
– Evaluate the model performance
– Use a search method to search over the hyper-parameter space to find the hyper-parameter/model that

optimizes performance

§ Note: The model that minimizes the loss/error on the training data is likely to overfit.

§ To avoid this, the performance is assessed on a separate validation data (when there is abundant data)
§ Split data into training, validation, and test datasets (example: 60:20:20)

§ One uses cross-validation (when there is not enough data)

Evaluation Using Cross Validation

41

§ Cross-validation. The typical K-fold cross validation works as follows:
1. Randomly divide the data into K folds. (Stratification may be needed for imbalanced data)
2. For each k = 1, …, K

1. Leave the k-th fold out, build a model using the rest K-1 folds and given hyper parameter 𝛼, denote as ;𝑓23(𝑥; 𝛼)
2. Predict on the k-th fold.

3. After obtaining the cross-validation predictions for the entire data, compute the loss/error

• This is the cross-validation model performance
– Sometime, people compute the performance for each k-th hold-out fold and compute and average

§ Typical choices for 𝐾 are 5 or 10.

§ The case 𝐾 = 𝑁 is known as leave-one-out cross validation.
o With larger 𝐾, this becomes computationally expensive

Batch or non-sequential search methods

42

§ Grid search and random search : two most widely-used batch (non-sequential) parameter tuning methods.

§ Grid search - specify a set of grid points for each parameter and try all combinations in the parameter grid space. It is
simple but not efficient:
§ The number of HP combinations increases exponentially; yet many parameters may not matter much.
§ On any single HP dimension, you only have a handful of points, this is risky.

§ Random search, we randomly sample hyper-parameters from each parameter space.
§ “Random Search for Hyper-Parameter Optimization” by Bergstra and Bengio: random search is more efficient than

grid search

• Space filling designs: latin hypercube design, orthogonal arrays, etc.

• Grid search is implemented in GridSearchCV in sklearn
in python.

• Random search is implemented in
RandomizedSearchCV in sklearn in python

• GPyOpt – space filling designs

Grid search Random search Latin Hyper-cube search

Sequential search methods: Bayesian optimization

43

§ Grid and random search are not informed by past evaluations.

§ Both approaches may waste time searching area that is unpromising based on past evaluations.

§ Bayesian parameter optimization takes past evaluations into consideration.

§ By evaluating hyperparameters that appear more promising from past results, Bayesian methods can find better
model settings than random search in fewer iterations.

1. Using past evaluation results, build a surrogate probability model k𝑃 𝑠𝑐𝑜𝑟𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 .
2. Find the hyperparameters that perform best on the surrogate model
3. Apply these hyperparameters to build the model and evaluate the scores
4. Update the surrogate model incorporating the new results
5. Repeat steps 2–4 until max iterations or time is reached.

Surrogate model with 2 evaluations (left) and 8 evaluations (right)

Summary of hyper-parameter search methods

44

• There are other sequential search methods like TPE (Tree-structured Parzen Estimators), Hyperband, etc.

• All sequential algorithms exploit previous information to do intelligent searches and hence are more
efficient than batch techniques.

• The primary advantage of the batch methods is their simplicity.

• There are several open source software packages available for implementing the algorithms discussed
above:
– Spearmint: https://github.com/HIPS/Spearmint
– RoBO: http://automl.github.io/RoBO/
– GPyOpt: https://github.com/SheffieldML/GPyOpt
– GPflowOpt: https://github.com/GPflow/GPflowOpt
– Hyperband: https://github.com/zygmuntz/hyperband

https://github.com/HIPS/Spearmint
http://automl.github.io/RoBO/
https://github.com/SheffieldML/GPyOpt
https://github.com/GPflow/GPflowOpt
https://github.com/zygmuntz/hyperband

Neural Networks – Other Architectures

45

Complex NNs
Convolutional NN
Used in images, text, time series
• Key Features:

– Convolutional layers, where inputs are convolved with their
neighbors.

– Each output is a weighted average of the inputs:

5
',)

𝑎',) 𝑥',)

– The weights remain constant as the convolution is applied to
successive windows of data.

– Other tricks, like pooling

Recurrent NNs
• Useful in studying sequences, such as in natural language

context.
• Defined by “recurrent” connections, where the output of a

downstream unit serves as input to an upstream neuron.
• Several variations; “Long Short-Term Memory” (LTSM) was

popular
• Now focus is on Attention Networks.

46

A CNN sequence to classify handwritten digits

a-comprehensive-guide-to-convolutional-neural-networks
https://www.ibm.com/cloud/learn/recurrent-neural-networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Complex NNs (contd.)
Auto-Encoders

• Dimension Reduction Network

• Predicts input from input.

• Bottleneck layer engineers lower-dimensional features.

• Different types
– De-noising AE
– Sparse AE
– Variational AE …

Generative Adversarial Networks (GANs)

Unsupervised technique

• Pair of ANNs, trained with simultaneous backpropagation

• A Generator Network, which produces candidate data
examples

• A Discriminator Network, which learns to distinguish the
generated data from the real data. (Classification)

• Simultaneous training improves the performance of both
networks.

47
Input
layer

Hidden
layers Output layer

encoder decoder

code

Guide to AE

Real
Data

Predicted
Label

Discriminator
network

Random
Noise

Simula
ted

Data

Generator
network

https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368

Advanced Architectures and Ongoing Research
• Attention Networks

– Added mechanisms to model dependencies across data regardless of positions.
– Originally proposed as a component of RNN structures; now used independently.
– Reference “Attention Is All You Need” https://arxiv.org/pdf/1706.03762.pdf

• Temporal Fusion Transformers
– Use a combination of RNN and Attention structures to predict multi-horizon time series
– Provides some measure of interpretability into temporal patterns
– Reference: “Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting”

https://arxiv.org/pdf/1912.09363.pdf

• Other exciting work, both in the bank and in the broader research community

48

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1912.09363.pdf

Software
• Specialized software packages exploit computational graphs, symbolic differentiation, back propagation and mini-batch

training.

• Popular Packages include:
– TensorFlow /Keras(Google)
– PyTorch/Torch
– Caffe/Caffe2
– CNTK (Cognitive Toolkit) (Microsoft)
– Theano

• Wrappers exist to provide abstraction layers (Keras)

• Many general-purpose scientific packages have more limited implementations (R, MatLAB, scikit-learn)

• Many offer distributed or flexible computing

• NVidia providing growing support for GPU computation

49

Summary

50

• We have discussed several machine learning algorithms
– Focus was on supervised machine learning methods: random forest, GBM and FFNN

• Random forests and GBM are tree-based ensemble methods
– They were designed to improve the performance of a single tree using a collective set of trees.

• Neural network is a biologically inspired method designed to mimic the function of brain

• In structured data XGB and FFNN have competitive performances and both outperform RF

• Advantages of ML algorithms
– Useful in large datasets where we can fit more flexible nonparametric models
– Better predictive performance than traditional statistical techniques
– (Semi-)automated approaches to variable selection and feature transformation à useful with large datasets

• Disadvantages:
– Computationally intensive
o Need access to fast computing environment for model training and hyper-parameter tuning

– Model is a “black box” à no analytical expression for fitted model]𝑓 𝒙
– Goal is more than just prediction à must be able interpret results and explain to stakeholders
– Model is flexible, so it can overfit à must assess robustness
– Fitted model depends on various random elements and have to quantify these sources of variation

Reference

51

• Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2): 123–140.

• Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81-106.

• Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books
& Software.

• Friedman, J. H (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29 (5): 1189-1232.

• Friedman, J. H. (1999). Stochastic gradient boosting. Stanford University.

• Hastie, T.; Tibshirani, R.; Friedman, J. H. (2001). The elements of statistical learning : Data mining, inference, and prediction. New York: Springer Verlag.

• Breiman, Leo (2001). Random Forests. Machine Learning, 45 (1)

• Deep Learning, by I. Goodfellow, Y. Bengio, and A. Courville, available: http://www.deeplearningbook.org/

• Explained: Neural networks, by L. Hardesty, available: http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

• M Nielsen (2017), Neural Network and Deep Learning online book: http://neuralnetworksanddeeplearning.com/index.html

• Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2013). Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional
Expectation. eprint arXiv:1309.6392.

• Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, (pp. 1135-1144)

• Hu, L et. al (2022). Surrogate locally-interpretable models with supervised machine learning algorithms, Journal of Indian Statistical Association.

• Chen, J. et al (2020). Adaptive Explainable Neural Networks, arXiv:2004.02352

• Vaughan, J. et al (2018). Explainable Neural Networks based on Additive Index Models. The RMA Journal

http://www.deeplearningbook.org/
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
http://neuralnetworksanddeeplearning.com/index.html

