Introduction to High-Dimensional Data

T. V. Ramanathan

ram@unipune.ac.in

Department of Statistics Savitribai Phule Pune University Pune - 411007 (India).

One-Day International Workshop on High-Dimensional Data and AI/ML Algorithms with Applications

> School of Mathematical & Computing Sciences, Savitribai Phule Pune University, Pune

> > March 27, 2023

 Ω

イロト イ団 トイミト イミ

HD Data - A Motivating Example

• Let's play the baby shapes game (truly motivating for students ...): Group the items!!!

- What about grouping based on both shape and color? \bullet
- Lesson to learn: there may be different semantic concepts (and their corresponding patterns) hidden in the data (here: shape and color)
- Traditionally, data analysis is a part of the subject of statistics with its basics in probability theory, decision theory and analysis.
- New sources of data such as from satellites, RFID, Censors etc. — generate automatically huge volumes of data whose summarization called for a wide variety of data processing and analysis tools.
- For such data, traditional ideas of mathematical statistics such as hypothesis testing and confidence intervals do not help.

へのへ

Some HD Data Problems - Economics, Banking & Finance

- **Integration** of macro-economic, banking, monetary and financial data, huge in size, large number of predictors
- Risk Management (Market, Credit, Operational etc.) and their estimation with high dimensional data Stock prices, currency and derivative trades, transaction records, high-frequency trades, unstructured news and texts, Claims data across insurance firms,
- VAR modeling with sparsity assumptions (Large VAR) number of parameters grows quadratically - over fitting & bad prediction
- **Portfolio optimization & Risk management e.g., 1000** stocks means 5,00,500 covariance parameters - sparsity - High dimensional covariance matrix estimation
- **Market micro structure & Duration modeling** with High Frequency Data. @ ▶ ㅋ ㅋ ▶ ㅋ ㅋ ▶ ▶

T. V. Ramanathan ram@unipune.ac.in [HD Data & AI/ML Workshop, SMCS, SPPU](#page-0-0)

 290

• Curse of dimensionality: - Richard Bellman - Dynamic Programming

In optimization: if we must minimize a function f of d variables and we know that it is Lipschitz, that is,

$$
|f(x)-f(y)|\leq C||x-y||, x,y\in R^d
$$

then we need to order $(\frac{1}{\epsilon})$ $\left(\frac{1}{\epsilon}\right)^d$ evaluations on a grid in order to approximate the minimizer within error ϵ

High Dimensionality

• Nonparametric regression:

$$
X_{i1} = f(X_{i2},\cdots,X_{id}) + \epsilon_i
$$

- \bullet Assume that f is Lipschitz and $\epsilon_i \sim \textit{iidN}(0, 1)$. How does the accuracy of the estimate depend on N?
- Let Θ be the class of functions f which are Lipchitz on $[0,1]^d$. Then, it can be shown that

$$
sup_{f\in\Theta}E[\hat{f}-f(X)]^2\geq C N^{-2/(2+d)}
$$

(cf. Ibragimov & Khasminskii (1981))

 \bullet It can be seen that the sample size increases as dimension d increases.

• Blessings of dimensionality:

• Theoretical benefits due to probability theory. The regularity of having many "identical" dimensions over which one can "average" is a fundamental tool.

 290

High Dimensionality

- **Concentration of measure:** The "concentration of measure phenomenon" is about probabilities on product spaces in high dimension.
- Suppose we have a Lipschitz function f on R^d : Let P be the uniform distribution on the sphere in R^d and let X be a random variable with probability measure P.
- Then.

$$
P[|f(X) - E[f(X)]| > t] \leq C_1 e^{-C_2 t^2}
$$

where C_1 and C_2 are constants independent of f and dimension d.

• In other words, a Lipschitz function is almost a constant.

へのへ

Dimension asymptotics: Another use is that we can obtain results on the phenomenon by letting the dimension go to infinity.

 $2Q$

A + + = + + = +

High Dimensionality

- **Approach to continuum:** Some times high dimensional data arises because the underlying objects are really in a continuous space or a continuous phenomena; there is an underlying curve or image that we are sampling such as in functional data analysis or image processing.
- As the measured curves are continuous, there is an underlying compactness to the space of observed data which will be reflected by an approximate finite-dimensionality and an increasing simplicity of analysis for large d.

へのへ

Example:

- \bullet Suppose we have d equi-spaced samples on an underlying curve $B(t)$ on the interval [0, 1] which is a Brownian bridge. We have a d-dimensional data $X_{id} = B(i/d)$
- Suppose we are interested in $max_i X_{id}$
- **•** Obviously this tends to $max_{t \in [0,1]} B(t)$ for large d.
- Here we know the exact distribution of $max_{t \in [0,1]} B(t)$ from Kolomogorov-Smirnov.

 290

Statistical

• High dimensionality brings noise accumulation, spurious correlations and incidental endogeneity.

Computational

• High dimensionality combined with large sample size creates issues such as heavy computational cost and algorithmic instability.

 290

A + + = + + =

Paradigm Shifts in Statistical Thinking

Need for new statistical thinking

- Need for dimension reduction and variable selection to address noise accumulation issues.
- Need for high dimensional classification new regularization methods
- Need for methods to tackle spurious correlations between response and some unrelated covariates.
- Need for methods to tackle incidental endogeneity (many unrelated covariates may be incidentally correlated with residual noise creates biases and model selection inconsistencies).

- Analysis of High Dimensional Data - Simultaneously estimate or test several parameters
- Severe accumulation effect noise may dominate the underlying signal - handled by sparse modeling and variable selection
- Variable selection plays a pivotal role in overcoming noise accumulation - but, variable selection in high dimension can bring other issues such as spurious correlation, incidental endogeneity etc.
- \bullet E.g., A classification problem with p features with n observations.
- The discriminative power for classification will be low as the number of features (m) in the PC is large due to increased noise accumulation.

つへへ

High dimensional classification:

- *n* data points from $N_p(\mu_0, I_p)$; $N_p(\mu_1, I_p)$, $p = 4500$, $\mu_0 = 0$,
- μ_1 0 with probability 0.98 and standard DE with probability 0.02 - Most components have no discrimination power
- Even then, some components are very powerful in classification (2 %, or 90 realizations from DE, several components are very large and many are small).
- \bullet Distance based classifier put x into class 1 if :

$$
\|\mathbf{x} - \boldsymbol{\mu}_1\|^2 \le \|\mathbf{x} - \boldsymbol{\mu}_0\|^2 \quad \text{or} \quad \beta^T(\mathbf{x} - \boldsymbol{\mu}) \ge 0
$$

where $\beta = \mu_1 - \mu_0$ and $\mu = (\mu_1 + \mu_0)/2$.

- Misclassification rate: $\Phi(-\|\mu_1-\mu_0\|/2)$
- This is effectively zero (WLLN) as

$$
\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0\| \approx \sqrt{4500 \times .02 \times 1} \approx 9.48
$$

• When we estimate β , resulting classification rule behaves like random guess due to the accumulation [of](#page-13-0) [no](#page-15-0)[is](#page-13-0)[e.](#page-14-0)

 Ω

High dimensional classification: Illustration

- ${\bf X}_1, {\bf X}_2, ..., {\bf X}_n \sim N_p(\mu_1, l_p); \; \; {\bf Y}_1, {\bf Y}_2, ..., {\bf Y}_n \sim N_p(\mu_2, l_p)$
- To classify $\mathbf{Z} \in \mathcal{R}^p$ into one of this.
- Let $p = 1000$, $n = 100$, $\mu_1 = 0$, $\mu_2 =$ first 10 entires with value 3, all other entries zero.
- Plot the first two principal components using the first $m = 2$, 40, 200 and 1000 features.
- **•** The first 10 features contribute to classifications, but when $m > 10$, procedures do not obtain any additional signals, only accumulate noises.
- For $m = 40$, the accumulated signals compensate the accumulated noise, so that the first two principal components still have good discriminative power.
- When $m = 200$, the accumulated noise exceeds the signal gains. - Shows the need for sparse models in HD classification. - 伊 ▶ () 全 ▶ () 글 ▶

 290

T. V. Ramanathan ram@unipune.ac.in HD DATA & AI/ML WORKSHOP, SMCS, SPPU

 299

重

- A feature of high dimensionality variables that are not correlated theoretically, but the sample correlation will be very high.
- **•** Important variables can be highly correlated with several spurious variables which are scientifically unrelated.
- Lead to false scientific discoveries and wrong statistical inference
- Impact on variable selection
- Variance will be seriously under estimated bias will be very large.

 290

(Fan, Han & Liu, 2014 NSR)

- Consider a random sample of size $n = 60$ of $p-$ dimensional $N(0, I_p)$. - Population correlation between any two is zero.
- Corresponding sample correlation should be also small indeed the case when p is small, but need not be when p large.
- Compute the maximum of the sample correlation and the maximum of multiple correlation

$$
\hat{r} = \text{max}_{j \geq 2} | \hat{corr}(X_1, X_j) |,
$$

$$
\hat{R} = \max_{|\mathcal{S}|=4} |c\hat{or}r(X_1, \boldsymbol{X}_{\mathcal{S}})|, \ \ 1 \notin \mathcal{S}
$$

 \hat{R} is nothing but the correlation between X_1 and its best linear predictor using $X_{\mathcal{S}}$ (In the computation, we may use forward selection algorithm to compute \hat{R} , which is no larger that \hat{R} , but avoids computing all $\begin{pmatrix} p \\ 4 \end{pmatrix}$ multiple R^2 .

• Suppose we simulate this data for $p = 800$ and $p = 6400$ for 1000 times

つへへ

T. V. Ramanathan ram@unipune.ac.in HD DATA & AI/ML WORKSHOP, SMCS, SPPU

メロメメ 倒 メメ きょくきょう

重

 299

We may also denote the max. abs. multiple correlation as

$$
\hat{R} = \max \, \max_{|S|=4, \ \{\beta_j\}_{j=1}^4} |c \hat{or} (X_1, \sum_{j \in S} \beta_j X_j)|
$$

- Note that the empirical distribution of \hat{r} and \hat{R} are not concentrated around zero. In fact, they go away from zero as p increases.
- Theoretical results on \hat{r} can be found in (Cai & Jiang, 2012, JMA and Fan, Guo and Hao, 2012, JRSS B).
- Note that as a consequence of high spurious correlation, X_1 is practically indistinguishable from $\bm{X}_{\hat{\epsilon}}$ for a set $\hat{\mathcal{S}}$ with $|\hat{\mathcal{S}}| = 4$.
- If X_1 represents the expression level of a gene that is responsible for a disease, we cannot distinguish it from other four genes in \hat{S} that have a similar predictive power, although they are unrelated to the disease (scientifically irrelevant). (It may happen vice-versa also).

つへへ

Spurious correlation also affects the statistical inference, besides variable selection.

•
$$
\mathbf{Y} = \mathbf{X}^T \boldsymbol{\beta} + \epsilon, \ \sigma^2 = \text{Var}(\epsilon)
$$

• Residual variance based on selected variables

$$
\hat{\sigma}^2 = \frac{1}{n - |\hat{\mathcal{S}}|} \mathbf{Y}^{\mathsf{T}} (I_n - P_{\hat{\mathcal{S}}}) \mathbf{Y}, \ \ P_{\hat{\mathcal{S}}} = \mathbf{X}_{\hat{\mathcal{S}}} (\mathbf{X}_{\hat{\mathcal{S}}}^{\mathsf{T}} \mathbf{X}_{\hat{\mathcal{S}}})^{-1} \mathbf{X}_{\hat{\mathcal{S}}}
$$

- when the variables are not selected, and the model is unbiased, the d.f. adjustment makes the residual variance unbiased.
- Let $\beta = 0$, $Y = \epsilon$ all selected variables are spurious
- \bullet If the number of selected variable is much less than n,

$$
\hat{\sigma}^2 = \frac{1}{n - |\hat{\mathcal{S}}|} (1 - \gamma_n^2) ||\epsilon||^2 \approx (1 - \gamma_n^2)\sigma^2
$$

$$
\gamma_n^2 = \epsilon^T P_{\hat{\mathcal{S}}} \epsilon / ||\epsilon||^2
$$

 σ^2 is under estimated by a factor γ_n^2 - Statistical inference will be in trouble.

 Ω

Left panel represents distributions of γ_n and $\sigma^2=1$ when $|\mathcal{\hat S}|=1.$ In the other case, $Y = 2X_1 + .3X_2 + \epsilon$, $p = 1000$, $n = 50$.

 $2Q$

Incidental Endogeneity

- A researcher collects information about covariates which are potentially related to the response.
- A regressor is said to be endogenous when it is correlated with the error term, and exogenous otherwise.
- Consider the conventional sparse model, which assumes

$$
Y = \sum_{j=1}^p \beta_j X_j + \epsilon, \text{ with } E(\epsilon X_j) = 0, \ \ j = 1, 2, ..., p.
$$

with a small set $S = \{j : \beta_j \neq 0\}$.

- Some predictors are correlated with residual noise.
- Whenever more covariates are collected or measured, hardly the exogenous assumption is satisfied.
- Unlike spurious correlation, incidental endogeneity refers to the genuine existence of correlations between variables unintentionally, both due to high dimen[sio](#page-22-0)[na](#page-24-0)[li](#page-22-0)[ty.](#page-23-0)

 Ω

Incidental Endogeneity

- Endogeneity occurs as a result of selection biases, measurement errors and omitted variables. Also, it could be incidental (as a consequence of large number of predictors available)
- Big Data are usually aggregated from multiple sources with potentially different data generating schemes. This increases the possibility of selection bias and measurement errors, which also cause potential incidental endogeneity.
- Consequence : Endogeneity causes the inconsistency of the penalized least-squares method and possible false scientific discoveries. (Fan & Liao, 2014, AS)

へのへ

Incidental Endogeneity

- **How to test this in practice?** The problem of dealing with endogenous variables is not well understood in high-dimensional statistical analysis.
- The condition $E(\epsilon X_i) = 0, j = 1, 2, ..., p$ is too restrictive for real applications. A more realistic model assumption would be

$$
E(\epsilon|\{X_j\}_{j\in\mathcal{S}})=0.
$$

(Fan & Liao, 2014, AS) considered still a weaker condition ("over identification") viz.,

$$
E(\epsilon X_j) = 0 \text{ and } E(\epsilon X_j^2) = 0, \ j \in \mathcal{S}.
$$

These authors have showed that under the abouve condition, classical penalized least squares methods such as LASSO, SCAD and MCP are no more consisten[t.](#page-24-0)

つへへ

Sparsity

•
$$
Y_i = \mu + \sum_{j=1}^p \beta_j X_i^{(j)} + \epsilon_i, \ i = 1, 2, ..., n \text{ with } p \ge n.
$$

• Sparsity can be quantified in terms of ℓ_{q} -norm for $1 \leq q \leq \infty$ analogue to a ℓ_0 , which is not a norm.

•
$$
||\beta||_0^0 = |\{j; \beta_j \neq 0\}| = \sum_{j=1}^p |\beta_j|^0
$$
 (0⁰ = 0) - count the number of non-zero entries

- In analogy, $\|\beta\|_q^q = \sum$ p $j=1$ $|\beta_j|^q$ for $0 < q < \infty$. (or $q = 1$ it measures the sparsity in a different way and has the computational advantage of being convex in β .
- **•** Roughly, high-dimensional statistical inference is possible, in the sense of leading to reasonable accuracy or asymptotic consistency, if $log(p)$. (sparsity(β)) << n, depending on how we define sparsity.

Penalties

Lasso, SCAD and MCP penalties

 299

后

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

- (Fan & Liao, 2014, AS) introduced a penalized method, called focused generalized method of moments (FGMM). The FGMM effectively achieves the dimension reduction and applies the instrumental variable methods.
- They have shown that FGMM possesses the oracle property even in the presence of endogenous predictors, and that the solution is also near global minimum under the over-identification assumption.

∽≏ດ

- Penalized Quasi Likelihood

Classical model selection: Minimize the quasi likelihood

 $-QL(\beta) + \lambda ||\beta||_0$

- $\left\| . \right\|_0$ \textit{l}_0 -pseudo-norm (number of non-zero entries in a vector)
- $\bullet \lambda > 0$ regularization parameter control bias variance trade-off
- More general form:

$$
I_n(\beta) + \sum_{j=1}^p \rho_{\lambda,\gamma}(|\beta_j|)
$$

- $l_n(\beta)$ measures the goodness-of-fit of the model with parameter β
- \sum p $j=1$ $\rho_{\lambda,\gamma}(|\beta_j|)$ - Sparsity inducing penalty (encourages sparsity)
- \bullet λ tuning parameter that controls the bias-variance trade-off
- γ a possible fine-tune parameter which controls the degree of concavity of the penalty function.

 Ω

Penalized Quasi Likelihood

Some of the commonly used penalty functions are given below.

- Bridge: $\rho_{\lambda,\gamma}(|\beta|)=|\beta|^q$
- Ridge: Same as above, but with $q = 2$.
- Lasso: $\rho_{\lambda,\gamma}(|\beta|) = |\beta|$ (Least absolute selection and shrinkage operator)
- SCAD: $\rho_{\lambda,\gamma}(|\beta|) = a_1(\lambda,\gamma)I[0 \leq \beta < \lambda] + a_2(\lambda,\gamma)I[\lambda \leq \beta \leq$ $k\lambda$] + $a_3(\lambda, \gamma)I[k\lambda < \beta]$ (Smoothly clipped absolute deviation)
- The penalties are nondifferentiable at 0, which is necessary for sparsity.
- The Lasso is convex while the bridge and SCAD penalties are nonconvex.
- Nonconvexity is necessary for unbiasedness of the estimated coefficients.

A + + = + + = +

Penalized Quasi Likelihood

T. V. Ramanathan ram@unipune.ac.in [HD Data & AI/ML Workshop, SMCS, SPPU](#page-0-0)

 299

É

- Penalized Quasi Likelihood

 \leftarrow \Box \rightarrow .

K 御 ▶ K 君 ▶ K 君 ▶

É

 299

- How shall we choose among these penalty functions?
- **•** Sparsity and computing time should be the decisive factors.
- In applications, it is recommended to use either SCAD or MCP (minimax concavity penalty) thresholding, since they combine the advantages of both hard- and soft-thresholding operators.
- Many efficient algorithms have been proposed for solving the optimization problem in using different penalties. (Candes and Tao, 2007, AS)

つへへ

Penalized Quasi Likelihood

- The **oracle property** means that the penalized estimator is asymptotically equivalent to the oracle estimator that is the ideal estimator obtained only with signal variables without penalization.
- Many noncovex penalties such as the bridge and SCAD penalties possess the oracle property.
- In practice, however, only a local minimum (of the penalized sum of squared residuals) is given, and it is extremely difficult (almost impossible) to check if a given local minimum is (asymptotically) the oracle estimator.
- In this sense, the oracle property of a nonconvex penalty is practically meaningful only when reasonable local minima are asymptotically equivalent to the oracle estimator.

• Portfolio optimization: Minimize

$$
w^{'}\Sigma w
$$

such that

$$
\sum_{i=1}^p w_i = 1,
$$

where, w_i 's are weights associated with i^{th} asset and Σ is the variance covariance matrix of the assets.

- \bullet Σ is to be estimated (as it is unknown).
- When the number of parameter increases, the estimation can be difficult and the accuracy of the estimate may not be maintained.

へのへ

New Methods of Covariance Estimation

- The shrinkage method: A linear combination of the sample estimator and another estimator.
- **Factor models:** Matrices implied by the large dimensional factor models - observable or latent - principal components method and the maximum likelihood method.
- **Bayesian and empirical Bayes estimators:** Related to shrinkage estimator - provide alternative interpretations for the shrinkage method.
- **Method based on Random Matrix Theory:** Aims to attenuate the randomness of the sample covariance S using the theory of random matrices of high dimension. (El Karoui (2008), Artur Kotlicky (2015), Recent Papers by Arup Bose)

つへへ

1. Sample Variance-Covariance Matrix

- Simple to construct and unbiased.
- When invertible, the sample covariance coincides with the classical maximum likelihood estimate.
- Contains a lot of estimation error when the number of observations n is less than the number of variables say p , in which case, it is not invertible, even though the underlying true covariance matrix is invertible.
- When *n* is comparable to *p*, it has significant amount of sampling error.
- Extremely sensitive to outliers.

\n- Simulation Study:
$$
N(0, \Sigma)
$$
, $\Sigma = I$, $ER = \Sigma^{-1} - S^{-1}$, $(1/p^2) ||ER||_F^2 = (1/p^2) \sum_{i=1}^p \sum_{j=1}^p er_{ij}^2$, *er_{ij}* is the $(i, j)^{th}$ element of *ER*,
\n

1. Sample Covariance Matrix - Element wise MSE of Precision Matrix

Sample size $= 200$, Simulation $= 1000$.

Elementwise average MSE

 290

2. Penalized Estimation Using Matrix Log Transformation

- To obtain a positive definite estimate of the covariance matrix, which is an accurate estimate with a well-structured eigen-system.
- A regularized approach may be adopted to estimate Σ using the approximate log-likelihood function of $I_n(A)$, where $\Sigma = exp(A).$
- The penalty function $\|A\|_F^2$ $_F^2$ i.e the Frobenius norm of A, which is equivalent to $tr(A^2)$ is used.
- Estimate Σ , or equivalently A, by minimizing

$$
I_{n,\lambda}(A)=I_n(A)+\lambda tr(A^2)
$$

where λ is a tuning parameter.

つへへ

2. Penalized Estimation Using Matrix Log Transformation

- **•** Tuning parameter is a trade-off between the likelihood function and the penalty function.
- Set $A_0 = log(\Sigma_0)$, where $\Sigma_0 = S + \epsilon I$, ϵ is a pre-specified small positive quantity.
- Spectral decomposition of Σ_0 , we get $\, T_0D_0\, T_0^{'}$ 0 .
- Get \hat{B} by minimizing $l_{n,\lambda}$, where $B=\,T_{0}^{'}$ $T_0(A-A_0)T_0.$
- Get \hat{A} = $T_0\hat{B}T_0^{'}$ + A_0 and estimate $\hat{\Sigma}$ = $exp(\hat{A})$.

• Stop if
$$
\left\|\hat{\Sigma} - \Sigma_0\right\|_F^2 < \delta
$$
 (pre specified).

 290

3. Shrinkage Estimator

- The shrinkage estimator is a linear combination of the sample covariance matrix S and a highly structured estimator F.
- Compromise between the two by computing a convex linear combination

$$
\Sigma = \delta F + (1 - \delta) S
$$

- \bullet δ Shrinkage constant, $(0 < \delta < 1)$.
- **•** Here the sample covariance matrix is 'shrunk' towards the structured estimator.
- We consider a constant correlation model for F.

へのへ

3. Optimal Shrinkage Estimator - Ledoit & Wolf (LW)

• The Structured estimator is F is given by

$$
f_{ii}=s_{ii},\ \ f_{ij}=\bar{r}\ \sqrt{s_{ii}s_{jj}},\ \ r_{ij}=\frac{s_{ij}}{\sqrt{s_{ii}s_{jj}}}
$$

and $\bar{r} = 2((N-1)N)^{-1} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} r_{ij}$

- The shrinkage constant is $\hat{\delta}^* = \max(0, \min(1, \hat{\kappa}/T)),$ where $\hat{\kappa} = (\hat{\pi} - \hat{\rho})/\hat{\gamma}.$
- \bullet $\pi-$ sum of asymptotic variances of entries of S, ρ asymptotic covariances of entries of F with entries of S and $\gamma-$ mis specification of shrinkage target. (all the three can be consistently estimated)
- The optimal shrinkage estimator is given by

$$
\hat{\Sigma}_{LW} = \hat{\delta}^* F + \left(1 - \hat{\delta}^*\right) S.
$$

つへへ

3. Shrinkage Estimator

- **•** Performs better than the sample variance covariance matrix.
- An additional advantage of shrinkage estimator is that it is always positive definite i.e shrinkage estimator is a convex combination of an estimator that is positive definite (the shrinkage target F) and an estimator that is positive semi definite (the sample covariance matrix)
- LW Shrinkage estimator is distribution free.
- Here we consider the constant correlation model which gives comparable performance but is easier to implement. The model states that all the (pairwise) correlations are identical

4. Rao-Blackwell Ledoit-Wolf Estimator

• If the Gaussian assumption is true, then the LW estimator can be improved upon by applying the Rao-Blackwell theorem to the LW method, which results in a new estimator RBLW :

$$
\hat{\Sigma} = \lambda^* S + (1 - \lambda^*) T
$$

- T is a structured estimator defined as $T = \frac{tr(S)}{R}$ $\frac{(\mathcal{F})}{p}$.
- $\lambda^*_{\mathit{RBLW}}$ is the Rao-Blackwell Optimal Shrinkage Intensity, given by

$$
\lambda_{RBLW}^{*} = \frac{\frac{n-2}{n}tr(S) + tr^{2}(S)}{(n+2)\left[tr(S^{2}) - \frac{tr(S)}{p}\right]}
$$

$$
\hat{\Sigma}_{RBLW} = E\left[\hat{\Sigma}_{LW}|S\right]
$$

• The shrinkage intensity is modified to avoid over shrinkage:

$$
\lambda^*_{RBLW} = min(1, \lambda^*_{RBLW})
$$

• The RBLW estimator is

$$
\hat{\Sigma}_{RBLW} = (1 - \lambda_{RBLW}^*)S + \lambda_{RBLW}^*T
$$

 $2Q$

扂

AD > 4 E > 4 E >

5. Factor Models

 \bullet

- Returns have factor structure Risk can be expressed as a linear function of factor loadings
- The number of factors can be allowed to grow with the number of parameters.
- \bullet Asset returns are linear functions of k unobservable factors, $k < p$:

$$
X = \underline{\mu} + \Lambda \underline{f} + \underline{\epsilon}
$$

 $\mathcal{X} = (\underline{X}_1, \underline{X}_2, ..., \underline{X}_p)$ is a $n \times p$ matrix of asset returns, Λ is a $p \times k$ matrix of factor loadings.

The implied covariance matrix is $\Sigma = \Lambda \Omega_f \Lambda^{'} + \Omega_\epsilon$ where, $\Omega_f = \text{var}(f)$, and $\Omega_f = \text{var}(\epsilon)$.

- Because both Λ and f are unobservable and they enter the model in a multiplicative way - cannot be identified separately without restrictions.
- Normalization is done such that $\Omega_f = I$, implying $\Sigma = \Lambda \Lambda' + \Omega_{\epsilon}.$
- Standard methods provide an estimate of Σ .
- \bullet Ω_{ϵ} a diagonal matrix. If not diagonal, but maximum eigen value is bounded, then it is called as an approximate factor model.

Portfolio: Consists of 300 stocks.

Source: Yahoo Finance, National Stock Exchange (NSE), Bombay stock exchange (BSE) and Data market.

Few names of the sectors and companies considered.

- Banking sector: ICICI, HDFC, IDBI, Axis Bank, SBI, UBI, CBI etc.
- Automobile sector: Bajaj auto, Maruti Suzuki, Honda, Tata **Motors**
- Pharmacy sector: Glenmark, Cipla, Dr.Reddy's Ranbaxy etc.
- Financial sector: Bajaj finance, India bulls, Mahindra finance.
- Exchange rates of foreign currencies to INR : GBP, US dollar, Canadian dollar, Yen, Swiss franc, Euro etc.

Note: The data is of daily returns for the stocks and daily exchange rates for the financial year 2014-2015.

 290

メロメメ 御きメ ミドメ ミドー

 2990 高。

- Normality tests confirmed Gaussian nature of the returns.
- **•** Rao-Blackwell Ledoit-Wolf Shrinkage estimator appears to be performing better compared to others.
- Ledoit-Wolf Shrinkage estimator also performs well. (It is distribution-free in nature)

The performance of factor model estimators are not very bad. In fact, these are better than the penalized methods.

• The sample covariance estimators are the worst.

つへへ

Some Future Directions

- HD Covariance Estimation: Relaxing the assumption of normality, and instead, can we have heavy-tailed distributions - GHD would be a good choice.
- **HD Covariance Estimation: Behaviour, when we use** Value-at-Risk(VaR) and its generalizations, instead of realized risk.
- Application of multivariate GARCH or multivariate SV models to address the time dependency of variance.
- Model selection in HD Use of FIC (Pandhare & Ramanathan, Statistics, 2022)
- Large VAR modeling
- Use of High Frequency Data for understanding Market micro structure - Duration modeling (DST P[roj](#page-50-0)[ect](#page-52-0)[,](#page-50-0) [2](#page-51-0)[0](#page-52-0)[14-](#page-0-0)[20](#page-55-0)[17](#page-0-0)[\)](#page-55-0)

Statistics for High-Dimensional Data

Methods, Theory and Applications

Peter Bühlmann • Sara van de Geer

Introduction to High-Dimensional Statistics Second Edition

Christophe Giraud

T. V. Ramanathan ram@unipune.ac.in HD DATA & AI/ML WORKSHOP, SMCS, SPPU

High-Dimensional Statistics

A Non-Asymptotic Viewpoint

Martin J. Wainwright

T. V. Ramanathan ram@unipune.ac.in HD DATA & AI/ML WORKSHOP, SMCS, SPPU

THANK YOU FOR YOUR ATTENTION

T. V. Ramanathan ram@unipune.ac.in [HD Data & AI/ML Workshop, SMCS, SPPU](#page-0-0)

 $2Q$

遥