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HD Data - A Motivating Example
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High-Dimensional Data Analysis

Traditionally, data analysis is a part of the subject of statistics
with its basics in probability theory, decision theory and
analysis.

New sources of data — such as from satellites, RFID, Censors
etc. — generate automatically huge volumes of data whose
summarization called for a wide variety of data processing and
analysis tools.

For such data, traditional ideas of mathematical statistics such
as hypothesis testing and confidence intervals do not help.
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Some HD Data Problems - Economics, Banking & Finance

Integration of macro-economic, banking, monetary and
financial data, huge in size, large number of predictors

Risk Management (Market, Credit, Operational etc.) and
their estimation with high dimensional data
Stock prices, currency and derivative trades, transaction
records, high-frequency trades, unstructured news and texts,
Claims data across insurance firms,

VAR modeling - with sparsity assumptions (Large VAR) -
number of parameters grows quadratically - over fitting & bad
prediction

Portfolio optimization & Risk management e.g., 1000
stocks means 5,00,500 covariance parameters - sparsity - High
dimensional covariance matrix estimation

Market micro structure & Duration modeling with High
Frequency Data.
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High Dimensionality

Curse of dimensionality: - Richard Bellman - Dynamic
Programming

In optimization: if we must minimize a function f of d
variables and we know that it is Lipschitz, that is,

|f (x)− f (y)| ≤ C∥x − y∥, x , y ∈ Rd

then we need to order
(
1
ϵ

)d
evaluations on a grid in order to

approximate the minimizer within error ϵ
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High Dimensionality

Nonparametric regression:

Xi1 = f (Xi2, · · · ,Xid) + ϵi

Assume that f is Lipschitz and ϵi ∼ iidN(0, 1). How does
the accuracy of the estimate depend on N?

Let Θ be the class of functions f which are Lipchitz on [0, 1]d .
Then, it can be shown that

supf ∈ΘE [f̂ − f (X )]2 ≥ C N−2/(2+d)

(cf. Ibragimov & Khasminskii (1981))

It can be seen that the sample size increases as dimension d
increases.
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High Dimensionality

Blessings of dimensionality:

Theoretical benefits due to probability theory. The regularity
of having many “identical” dimensions over which one can
“average” is a fundamental tool.
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High Dimensionality

Concentration of measure: The “concentration of measure
phenomenon” is about probabilities on product spaces in high
dimension.

Suppose we have a Lipschitz function f on Rd : Let P be the
uniform distribution on the sphere in Rd and let X be a
random variable with probability measure P.

Then,
P[|f (X )− E [f (X )]| > t] ≤ C1e

−C2t2

where C1 and C2 are constants independent of f and
dimension d .

In other words, a Lipschitz function is almost a constant.
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High Dimensionality

Dimension asymptotics: Another use is that we can obtain
results on the phenomenon by letting the dimension go to infinity.
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High Dimensionality

Approach to continuum: Some times high dimensional data
arises because the underlying objects are really in a continuous
space or a continuous phenomena; there is an underlying
curve or image that we are sampling such as in functional
data analysis or image processing.

As the measured curves are continuous, there is an underlying
compactness to the space of observed data which will be
reflected by an approximate finite-dimensionality and an
increasing simplicity of analysis for large d .
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High Dimensionality

Example:

Suppose we have d equi-spaced samples on an underlying
curve B(t) on the interval [0, 1] which is a Brownian bridge.
We have a d-dimensional data Xid = B(i/d)

Suppose we are interested in maxi Xid

Obviously this tends to maxt∈[0,1]B(t) for large d .

Here we know the exact distribution of maxt∈[0,1]B(t) from
Kolomogorov-Smirnov.
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Challenges

Statistical

High dimensionality brings noise accumulation, spurious
correlations and incidental endogeneity.

Computational

High dimensionality combined with large sample size creates
issues such as heavy computational cost and algorithmic
instability.

T. V. Ramanathan ram@unipune.ac.in HD Data & AI/ML Workshop, SMCS, SPPU



Paradigm Shifts in Statistical Thinking

Need for new statistical thinking

Need for dimension reduction and variable selection to address
noise accumulation issues.

Need for high dimensional classification - new regularization
methods

Need for methods to tackle spurious correlations between
response and some unrelated covariates.

Need for methods to tackle incidental endogeneity (many
unrelated covariates may be incidentally correlated with
residual noise creates biases and model selection
inconsistencies).
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Noise Accumulation

Analysis of High Dimensional Data - Simultaneously estimate
or test several parameters

Severe accumulation effect - noise may dominate the
underlying signal - handled by sparse modeling and variable
selection

Variable selection plays a pivotal role in overcoming noise
accumulation - but, variable selection in high dimension can
bring other issues such as spurious correlation, incidental
endogeneity etc.

E.g., A classification problem with p features with n
observations.

The discriminative power for classification will be low as the
number of features (m) in the PC is large due to increased
noise accumulation.
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Noise Accumulation

High dimensional classification:

n data points from Np(µ0, Ip); Np(µ1, Ip), p = 4500, µ0 = 0,

µ1 - 0 with probability 0.98 and standard DE with probability
0.02 - Most components have no discrimination power

Even then, some components are very powerful in
classification (2 %, or 90 realizations from DE, several
components are very large and many are small).

Distance based classifier put x into class 1 if :

∥x − µ1∥
2 ≤ ∥x − µ0∥

2 or βT (x − µ) ≥ 0

where β = µ1 − µ0 and µ = (µ1 + µ0)/2.

Misclassification rate: Φ (−∥µ1 − µ0∥ /2)
This is effectively zero (WLLN) as

∥µ1 − µ0∥ ≈
√
4500× .02× 1 ≈ 9.48

When we estimate β, resulting classification rule behaves like
random guess due to the accumulation of noise.
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Noise Accumulation

High dimensional classification: Illustration

X 1,X 2, ...,X n ∼ Np(µ1, Ip); Y 1,Y 2, ...,Y n ∼ Np(µ2, Ip)

To classify Z ∈ Rp into one of this.

Let p = 1000, n = 100, µ1 = 0, µ2 = first 10 entires with
value 3, all other entries zero.

Plot the first two principal components using the first
m = 2, 40, 200 and 1000 features.

The first 10 features contribute to classifications, but when
m > 10, procedures do not obtain any additional signals, only
accumulate noises.

For m = 40, the accumulated signals compensate the
accumulated noise, so that the first two principal components
still have good discriminative power.

When m = 200, the accumulated noise exceeds the signal
gains. - Shows the need for sparse models in HD
classification.
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Noise Accumulation
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Spurious Correlation

A feature of high dimensionality - variables that are not
correlated theoretically, but the sample correlation will be very
high.

Important variables can be highly correlated with several
spurious variables which are scientifically unrelated.

Lead to false scientific discoveries and wrong statistical
inference

Impact on variable selection

Variance will be seriously under estimated - bias will be
very large.

T. V. Ramanathan ram@unipune.ac.in HD Data & AI/ML Workshop, SMCS, SPPU



Spurious Correlation

(Fan, Han & Liu, 2014 NSR)

Consider a random sample of size n = 60 of p− dimensional
N(0, Ip). - Population correlation between any two is zero.

Corresponding sample correlation should be also small - indeed
the case when p is small, but need not be when p large.

Compute the maximum of the sample correlation and the
maximum of multiple correlation

r̂ = maxj≥2 | ˆcorr(X1,Xj)|,

R̂ = max|S|=4 | ˆcorr(X1,XS)|, 1 /∈ S

R̂ is nothing but the correlation between X1 and its best linear
predictor using XS (In the computation, we may use forward selection algorithm to compute

R̂, which is no larger that R̂, but avoids computing all

(
p
4

)
multiple R2.)

Suppose we simulate this data for p = 800 and p = 6400 for
1000 times
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Spurious Correlation
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Spurious Correlation

We may also denote the max. abs. multiple correlation as

R̂ = max max|S|=4, {βj}4j=1
| ˆcorr(X1,

∑
j∈S

βjXj)|

Note that the empirical distribution of r̂ and R̂ are not
concentrated around zero. In fact, they go away from zero as
p increases.

Theoretical results on r̂ can be found in (Cai & Jiang, 2012,
JMA and Fan, Guo and Hao, 2012, JRSS B).

Note that as a consequence of high spurious correlation, X1 is
practically indistinguishable from X Ŝ for a set Ŝ with |Ŝ| = 4.

If X1 represents the expression level of a gene that is
responsible for a disease, we cannot distinguish it from other
four genes in Ŝ that have a similar predictive power, although
they are unrelated to the disease (scientifically irrelevant). (It
may happen vice-versa also).
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Spurious Correlation

Spurious correlation also affects the statistical inference, besides
variable selection.

Y = XTβ + ϵ, σ2 = Var(ϵ)

Residual variance based on selected variables

σ̂2 =
1

n − |Ŝ|
Y T (In − PŜ)Y , PŜ = X Ŝ(X Ŝ

TX Ŝ)
−1X Ŝ

when the variables are not selected, and the model is unbiased,
the d.f. adjustment makes the residual variance unbiased.

Let β = 0, Y = ϵ - all selected variables are spurious

If the number of selected variable is much less than n,

σ̂2 =
1

n − |Ŝ|
(1− γ2n) ∥ϵ∥

2 ≈ (1− γ2n)σ
2

γ2n = ϵTPŜϵ/ ∥ϵ∥
2

σ2 is under estimated by a factor γ2n - Statistical inference will
be in trouble.
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Spurious Correlation

Left panel represents distributions of γn and σ2 = 1 when |Ŝ| = 1. In the

other case, Y = 2X1 + .3X2 + ϵ, p = 1000, n = 50.
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Incidental Endogeneity

A researcher collects information about covariates which are
potentially related to the response.

A regressor is said to be endogenous when it is correlated with
the error term, and exogenous otherwise.

Consider the conventional sparse model, which assumes

Y =

p∑
j=1

βjXj + ϵ, with E (ϵXj) = 0, j = 1, 2, ..., p.

with a small set S = {j : βj ̸= 0}.
Some predictors are correlated with residual noise.

Whenever more covariates are collected or measured, hardly
the exogenous assumption is satisfied.

Unlike spurious correlation, incidental endogeneity refers to
the genuine existence of correlations between variables
unintentionally, both due to high dimensionality.
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Incidental Endogeneity

Endogeneity occurs as a result of selection biases,
measurement errors and omitted variables. Also, it could be
incidental (as a consequence of large number of predictors
available)

Big Data are usually aggregated from multiple sources with
potentially different data generating schemes. This increases
the possibility of selection bias and measurement errors, which
also cause potential incidental endogeneity.

Consequence : Endogeneity causes the inconsistency of
the penalized least-squares method and possible false
scientific discoveries. (Fan & Liao, 2014, AS)
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Incidental Endogeneity

How to test this in practice? The problem of dealing with
endogenous variables is not well understood in
high-dimensional statistical analysis.

The condition E (ϵXj) = 0, j = 1, 2, ..., p is too restrictive for
real applications. A more realistic model assumption would be

E (ϵ|{Xj}j∈S) = 0.

(Fan & Liao, 2014, AS) considered still a weaker condition
(“over identification”) viz.,

E (ϵXj) = 0 and E (ϵX 2
j ) = 0, j ∈ S.

These authors have showed that under the abouve condition,
classical penalized least squares methods such as LASSO,
SCAD and MCP are no more consistent.
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Sparsity

Yi = µ+
p∑

j=1
βjX

(j)
i + ϵi , i = 1, 2, ..., n with p ≥ n.

Sparsity can be quantified in terms of ℓq-norm for 1 ≤ q ≤ ∞
analogue to a ℓ0, which is not a norm.

∥β∥00 = |{j ;βj ̸= 0}| =
p∑

j=1
|βj |0 (00 = 0) - count the number

of non-zero entries

In analogy, ∥β∥qq =
p∑

j=1
|βj |q for 0 < q < ∞. (or q = 1 it

measures the sparsity in a different way and has the
computational advantage of being convex in β.

Roughly, high-dimensional statistical inference is possible, in
the sense of leading to reasonable accuracy or asymptotic
consistency, if log(p) . (sparsity(β)) << n, depending on how
we define sparsity.
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Penalties
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Incidental Endogeneity

(Fan & Liao, 2014, AS) introduced a penalized method, called
focused generalized method of moments (FGMM). The
FGMM effectively achieves the dimension reduction and
applies the instrumental variable methods.

They have shown that FGMM possesses the oracle property
even in the presence of endogenous predictors, and that the
solution is also near global minimum under the
over-identification assumption.
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- Penalized Quasi Likelihood

Classical model selection: Minimize the quasi likelihood

−QL(β) + λ ∥β∥0
∥.∥0 - l0-pseudo-norm (number of non-zero entries in a vector)

λ > 0 - regularization parameter - control bias variance
trade-off

More general form:

ln(β) +

p∑
j=1

ρλ,γ(|βj |)

ln(β) measures the goodness-of-fit of the model with
parameter β
p∑

j=1
ρλ,γ(|βj |) - Sparsity inducing penalty (encourages sparsity)

λ - tuning parameter that controls the bias-variance trade-off

γ- a possible fine-tune parameter which controls the degree of
concavity of the penalty function.
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Penalized Quasi Likelihood

Some of the commonly used penalty functions are given below.

Bridge: ρλ,γ(|β|) = |β|q

Ridge: Same as above, but with q = 2.

Lasso: ρλ,γ(|β|) = |β| (Least absolute selection and shrinkage
operator)

SCAD: ρλ,γ(|β|) = a1(λ, γ)I [0 ≤ β < λ] + a2(λ, γ)I [λ ≤ β ≤
kλ] + a3(λ, γ)I [kλ < β] (Smoothly clipped absolute deviation)

The penalties are nondifferentiable at 0, which is necessary for
sparsity.

The Lasso is convex while the bridge and SCAD penalties are
nonconvex.

Nonconvexity is necessary for unbiasedness of the estimated
coefficients.
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Penalized Quasi Likelihood
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- Penalized Quasi Likelihood

T. V. Ramanathan ram@unipune.ac.in HD Data & AI/ML Workshop, SMCS, SPPU



Penalized Quasi Likelihood

How shall we choose among these penalty functions?

Sparsity and computing time should be the decisive factors.

In applications, it is recommended to use either SCAD or MCP
(minimax concavity penalty) thresholding, since they combine
the advantages of both hard- and soft-thresholding operators.

Many efficient algorithms have been proposed for solving the
optimization problem in using different penalties. (Candes and
Tao, 2007, AS)

T. V. Ramanathan ram@unipune.ac.in HD Data & AI/ML Workshop, SMCS, SPPU



Penalized Quasi Likelihood

The oracle property means that the penalized estimator is
asymptotically equivalent to the oracle estimator that is the
ideal estimator obtained only with signal variables without
penalization.

Many noncovex penalties such as the bridge and SCAD
penalties possess the oracle property.

In practice, however, only a local minimum (of the penalized
sum of squared residuals) is given, and it is extremely difficult
(almost impossible) to check if a given local minimum is
(asymptotically) the oracle estimator.

In this sense, the oracle property of a nonconvex penalty is
practically meaningful only when reasonable local minima are
asymptotically equivalent to the oracle estimator.
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Portfolio Optimization with High Dimensional Data

Portfolio optimization:
Minimize

w
′
Σw

such that
p∑

i=1

wi = 1,

where, wi ’s are weights associated with i th asset and Σ is the
variance covariance matrix of the assets.

Σ is to be estimated (as it is unknown).

When the number of parameter increases, the estimation can
be difficult and the accuracy of the estimate may not be
maintained.
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New Methods of Covariance Estimation

The shrinkage method: A linear combination of the sample
estimator and another estimator.

Factor models: Matrices implied by the large dimensional
factor models - observable or latent - principal components
method and the maximum likelihood method.

Bayesian and empirical Bayes estimators: Related to
shrinkage estimator - provide alternative interpretations for
the shrinkage method.

Method based on Random Matrix Theory: Aims to
attenuate the randomness of the sample covariance S using
the theory of random matrices of high dimension. (El Karoui
(2008), Artur Kotlicky (2015), Recent Papers by Arup Bose)

T. V. Ramanathan ram@unipune.ac.in HD Data & AI/ML Workshop, SMCS, SPPU



1. Sample Variance-Covariance Matrix

Simple to construct and unbiased.

When invertible, the sample covariance coincides with the
classical maximum likelihood estimate.

Contains a lot of estimation error when the number of
observations n is less than the number of variables say p, in
which case, it is not invertible, even though the underlying
true covariance matrix is invertible.

When n is comparable to p, it has significant amount of
sampling error.

Extremely sensitive to outliers.

Simulation Study: N(0,Σ), Σ = I , ER = Σ−1 − S−1,

(1/p2) ∥ER∥2F = (1/p2)
p∑

i=1

p∑
j=1

er2ij ,

erij is the (i , j)th element of ER,

T. V. Ramanathan ram@unipune.ac.in HD Data & AI/ML Workshop, SMCS, SPPU



1. Sample Covariance Matrix - Element wise MSE of
Precision Matrix

Sample size = 200, Simulation = 1000.
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2. Penalized Estimation Using Matrix Log Transformation

To obtain a positive definite estimate of the covariance
matrix, which is an accurate estimate with a well-structured
eigen-system.

A regularized approach may be adopted to estimate Σ using
the approximate log-likelihood function of ln(A), where
Σ = exp(A).

The penalty function ∥A∥2F i.e the Frobenius norm of A, which
is equivalent to tr(A2) is used.

Estimate Σ, or equivalently A, by minimizing

ln,λ(A) = ln(A) + λtr(A2)

where λ is a tuning parameter.
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2. Penalized Estimation Using Matrix Log Transformation

Tuning parameter is a trade-off between the likelihood
function and the penalty function.

Set A0 = log(Σ0), where Σ0 = S + ϵI , ϵ is a pre-specified
small positive quantity.

Spectral decomposition of Σ0, we get T0D0T
′
0.

Get B̂ by minimizing ln,λ, where B = T
′
0(A− A0)T0.

Get Â=T0B̂T
′
0 + A0 and estimate Σ̂=exp(Â).

Stop if
∥∥∥Σ̂− Σ0

∥∥∥2
F
< δ (pre sepcified).
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3. Shrinkage Estimator

The shrinkage estimator is a linear combination of the sample
covariance matrix S and a highly structured estimator F .

Compromise between the two by computing a convex linear
combination

Σ = δF + (1− δ) S

δ - Shrinkage constant, (0 < δ < 1).

Here the sample covariance matrix is ’shrunk’ towards the
structured estimator.

We consider a constant correlation model for F .
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3. Optimal Shrinkage Estimator - Ledoit & Wolf (LW)

The Structured estimator is F is given by

fii = sii , fij = r̄
√
sii sjj , rij =

sij√
sii sjj

and r̄ = 2((N − 1)N)−1
∑N−1

i=1

∑N
j=i+1 rij

The shrinkage constant is
δ̂∗ = max(0,min(1, κ̂/T )), where κ̂ = (π̂ − ρ̂)/γ̂.

π− sum of asymptotic variances of entries of S , ρ−
asymptotic covariances of entries of F with entries of S and
γ− mis specification of shrinkage target. (all the three can be
consistently estimated)

The optimal shrinkage estimator is given by

Σ̂LW = δ̂∗F +
(
1− δ̂∗

)
S .
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3. Shrinkage Estimator

Performs better than the sample variance covariance matrix.

An additional advantage of shrinkage estimator is that it is
always positive definite i.e shrinkage estimator is a convex
combination of an estimator that is positive definite (the
shrinkage target F) and an estimator that is positive semi
definite (the sample covariance matrix)

LW Shrinkage estimator is distribution free.

Here we consider the constant correlation model which gives
comparable performance but is easier to implement. The
model states that all the (pairwise) correlations are identical
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4. Rao-Blackwell Ledoit-Wolf Estimator

If the Gaussian assumption is true, then the LW estimator can
be improved upon by applying the Rao-Blackwell theorem to
the LW method, which results in a new estimator RBLW :

Σ̂ = λ∗S + (1− λ∗)T

T is a structured estimator defined as T = tr(S)
p I .

λ∗
RBLW is the Rao-Blackwell Optimal Shrinkage Intensity,

given by

λ∗
RBLW =

n−2
n tr(S) + tr2(S)

(n + 2)
[
tr(S2)− tr(S)

p

]
Σ̂RBLW = E

[
Σ̂LW |S

]
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4. Rao-Blackwell Ledoit-Wolf Estimator

The shrinkage intensity is modified to avoid over shrinkage:

λ∗
RBLW = min(1, λ∗

RBLW )

The RBLW estimator is

Σ̂RBLW = (1− λ∗
RBLW )S + λ∗

RBLWT
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5. Factor Models

Returns have factor structure - Risk can be expressed as a
linear function of factor loadings

The number of factors can be allowed to grow with the
number of parameters.

Asset returns are linear functions of k unobservable factors,
k < p :

X = µ+ Λf + ϵ

X = (X 1,X 2, ...,X p) is a n × p matrix of asset returns, Λ is a
p × k matrix of factor loadings.

The implied covariance matrix is Σ = ΛΩf Λ
′
+Ωϵ where,

Ωf = var(f ), and Ωϵ = var(ϵ).
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5. Factor Models

Because both Λ and f are unobservable and they enter the
model in a multiplicative way - cannot be identified separately
without restrictions.

Normalization is done such that Ωf = I , implying
Σ = ΛΛ

′
+Ωϵ.

Standard methods provide an estimate of Σ.

Ωϵ - a diagonal matrix. If not diagonal, but maximum eigen
value is bounded, then it is called as an approximate factor
model.

T. V. Ramanathan ram@unipune.ac.in HD Data & AI/ML Workshop, SMCS, SPPU



Data Description

Portfolio: Consists of 300 stocks.
Source: Yahoo Finance, National Stock Exchange (NSE), Bombay
stock exchange (BSE) and Data market.
Few names of the sectors and companies considered.

Banking sector: ICICI, HDFC, IDBI, Axis Bank, SBI, UBI, CBI
etc.

Automobile sector: Bajaj auto, Maruti Suzuki, Honda, Tata
Motors

Pharmacy sector: Glenmark, Cipla, Dr.Reddy’s Ranbaxy etc.

Financial sector: Bajaj finance, India bulls, Mahindra finance.

Exchange rates of foreign currencies to INR : GBP, US dollar,
Canadian dollar, Yen, Swiss franc, Euro etc.

Note: The data is of daily returns for the stocks and daily
exchange rates for the financial year 2014-2015.
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Realized Risk
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Data Analysis: Some Observations

Normality tests confirmed Gaussian nature of the returns.

Rao-Blackwell Ledoit-Wolf Shrinkage estimator appears to be
performing better compared to others.

Ledoit-Wolf Shrinkage estimator also performs well. (It is
distribution-free in nature)

The performance of factor model estimators are not very bad.
In fact, these are better than the penalized methods.

The sample covariance estimators are the worst.
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Some Future Directions

HD Covariance Estimation: Relaxing the assumption of
normality, and instead, can we have heavy-tailed distributions
- GHD would be a good choice.

HD Covariance Estimation: Behaviour, when we use
Value-at-Risk(VaR) and its generalizations, instead of realized
risk.

Application of multivariate GARCH or multivariate SV models
to address the time dependency of variance.

Model selection in HD - Use of FIC (Pandhare &
Ramanathan, Statistics, 2022)

Large VAR modeling

Use of High Frequency Data for understanding Market micro
structure - Duration modeling ( DST Project, 2014-2017)
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