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Objectives

I Modeling the Available Information

I Model Selection and Interpretation

I Concept of Generalized Linear Models

I Logistic Regression Model

I Logistic Regression as a Classifier



Modeling the Available Information

I The body fat is an important component in determining the
health of an individual. However, the percentage bady fat is
not as easy to measure as some of the other components such
as age, height, weight, abdominal circumference etc. Of
interest is to investigate whether there is any relationship
between the percentage body fat and these other components.
If yes, the question is whether the percentage body fat can be
represented by a function of these components.

I It is claimed that there is gender discrimination with respect
to wages and men get higher wages than women with the
same characteristics such as educational qualification, age etc.
In order to investigate such a claim the data is collected on
the wage, age, gender, educational qualification and the years
of education. This can further lead to investigating whether it
is worthwhile to have higher educational qualification to get a
higher wage, after accounting for the gender difference and
age.



Modeling the Available Information - contd

I In a NHS study to find out the success of a surgery, the
interest is in investigating the effect of the gender, age, health
condition of the patient, hereditary factors etc on the success
or the failure of the surgery.

I The banks and other finance companies which allocate
credit/debit cards or loans have to take decision regarding
allocation of card or increasing credit limit, sanctioning of
loan based on the capacity of the customer to replay the
credit. The capacity to repay depends on various factors such
as steady income, source of income, other commitments -
personal and financial, credit score, customer background etc.
based on the available information on a customer, the decision
is whether to sanction card/loan.



Modeling the Available Information - contd

I Businesses like banks, mobile service providers, commercial
establishments have to worry about problem of ’churning’ i.e.
customers leaving and joining another service provider. It is
important to understand which aspects of the service
influences a customer’s decision in this regard. Management
can concentrate efforts on improvement of service, keeping in
mind these priorities.

I Employee attrition (loss of employees due to resignation) is
one of the major problems all businesses face. The resignation
of an employee typically affects the particular work/project the
employee was engaged in at the time of leaving, apart from
the cost to organization. As a result, the organizations prefer
to know how various factors such as age, gender, qualification,
location, type of job, type of incentives etc affect the attrition.



Modeling the Available Information - contd

I For an insurance company, the interest is in predicting the
number of claims that an insurer will make in one year from
the third party automobile insurance, given the amount
insured, the make of the car, the non-claim bonus received
last year, age of the insurer and so on.



The Problem

I Note that in all these examples, there is a ‘random variable’ of
interest which is typically called ‘the response variable’ to be
denoted by Y and is one of the following

1. a numerical variable such as percentage body fat of an
individual or amount of wage earned.

2. a binary or dichotomous variable such as whether a surgery is
successful or not, whether a customer is given loan or not,
whether a customer is churning or not, which represents
success or failure or more generally, presence or absence of an
characteristic of interest.

3. a count variable such as number of claims or number of
accidents, i.e. the number of times an event of interest
occures (either by itself or over a specified period of exposure
such as one year or one month), which is a discrete integer
valued random variable.



The Problem - contd
I Additional information is provided on other characteristics

such as
1. age, height, weight, abdominal circumference of an individual

or the gender, age, health
2. age, weight, hereditary factors of a patient or steady income,

source of income, other commitments - personal and financial,
credit score, customer background etc of a customer.

3. the amount insured, the make of the car, the non-claim bonus
received last year, age of the insurer and so on.

These characteristics are believed to have additional
knowledge on the response variable of interest and can affect
the value of the response variable.
The information on these characteristics act as regressors or
explanatory variables X1,X2, . . . ,Xp.
In literature, various other terms are used for X1,X2, . . . ,Xp

such as the term regressors for linear regression models and
explanatory variables for logistic regression models.
Note that the regressors can be numerical or categorical and
need to be handled appropriately.



The Aim

The aim is to build an appropriate model to use the information
available on the regressors or explanatory variables to make better
prediction about the response variable Y .

Thus the interest is to provide a mathematical function

E (Y ) = function(X1,X2, . . . ,Xp)

based on the given values of X1,X2, . . . ,Xp and helps in predicting
the expected value of the response variable Y .



Generalized Linear Model

Note that the function involves the unknown parameters, typically
denoted by Greek letters α, β etc.

For many situations, the model further assumes that
function(X1,X2, . . . ,Xp) is a function of the linear function of the
unknown parameters β0, β1, . . . , βp given by
β0 + β1X1 + β2X2 + · · ·+ βpXp which is called the linear predictor.

Thus the function is expressed as

E (Y ) = function(β0 + β1X1 + β2X2 + · · ·+ βpXp).

which is called a Generalized Linear Model (GLM).



Why?

1. To predict the model, i.e. the expected value of the response
variable for a new case, based on the data on the explanatory
variables for that case (Supervised learning).

2. To study the impact of one explanatory variable on the
response variable keeping other explanatory variables fixed.
For example, with same gender and same educational
qualification, one can explore how the age affects the wages
received.

3. To verify whether the data support certain beliefs
(hypotheses) - for example, whether the age affects the
success of surgery and if so, how does it affect with one year
increase in the age.

4. To use the model for classification of an unit based on the
explanatory variables.



Different Models
Set Up:
Response variable Y ,
Explanatory variables or Regressors X1,X2, . . . ,Xp

Objective:
To model expectation of Y in terms of a function of
X1,X2, . . . ,Xp

• The model ideally depends on the type of response variable
under consideration.

1. If Y is continuous: Multiple Linear Regression if Y can be
assumed to be Normal

2. If Y is continuous: other models such as Gamma Regression
etc if Y can not be assumed to be Normal (GLM)

3. If Y is binary: Logistic Regression (GLM)

4. If Y is count data: Poisson, Negative Binommial Regression
(GLM)

5. If Y is multicategory: Multilogit Regression (ordinal or
nominal)



Example: Surgery Data

The records are from surgery on 40 patients where yi = 1 if the
patient died within 30 days of surgery and zero otherwise. Age, in
years, is recorded for each patient.

Patient Age yi Patient Age yi

1 50 0 21 61 0

2 50 0 22 61 1

3 51 0 23 61 1

4 51 0 24 62 1

Of interest is the effect of age on the chances of survival. We
would be particularly interested in knowing whether the age is
associated with the survival rate and if so, what is the relation
between age and chance of survival.
Note that yi = 1 stands for death here so ‘success’ is death and
needs to be interpreted appropriately.



Scatter Plot of Surgery Data



Modeling Binary Response
With the dichotomous variable Y , the outcome of interest to the
experimenter is called a ‘success’ and we define

Y =

{
1 if the outcome is a success

0 if the outcome is a failure

Thus we have a binary response variable taking one of the two
values in {0, 1}. Let π denote the probability of success,
0 < π < 1. Then

P[Y = 1] = π, and P[Y = 0] = 1− π.

Further, we can express

P[Y = y ] = πy (1− π)1−y , y = 0, 1, π ∈ (0, 1)

and hence Y ∼ Bernoulli(π). We also know that

E (Y ) = π,Var(Y ) = π(1− π).

Corresponding to every Yi we will have one πi , i = 1, . . . , n.



Modelling- contd

Alternatively, corresponding to each πi , we may have outcomes of
ni trials for i = 1, . . . , n. In such a situation, we define n
independent random variables Yi where

Yi = number of successes in ni independent trials,

with the probability of success π ∈ (0, 1).
Then Yi ∼ Binomial(ni , πi ), πi ∈ (0, 1) with probability mass
function

P[Yi = yi ] =

(
ni
yi

)
πyi (1− πi )

ni−yi

and
E (Yi ) = µi = niπi , Var(Yi ) = niπi (1− πi ).



Logistic Regression Model

For the binary response, we equate the expected value of Y to be
a function of the linear predictor β0 + β1X1 + β2X2 + · · ·+ βpXp.
In particular, we consider the Logistic Regression Model, where

E (Y ) = π =
exp(β0 + β1X1 + · · ·+ βpXp)

1 + exp(β0 + β1X1 + · · ·+ βpXp)

or equivalently

log(
π

1− π
) = β0 + β1X1 + · · ·+ βpXp

which ensures that π lies between (0, 1).



Fitting Logistic Regression Model

I The Logistic Regression Model is a particular case of
Generalized Linear Models (GLM).

I The model fitting involves estimation of the model parameters
β0, β1, . . . , βp and these are estimated using an iterative
procedure (Iterative Re-Weighted Least Squares:IRWLS) for
the Generalized Linear Models.

I Most of the statistical packages provide IRWLS computation
procedures.

I It can be fitted using the built-in function glm() in R package
and can be used for classification.



Fitted Model

glm(formula = Yi ~ Age, family = binomial, data = sur)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6601 -0.8099 -0.5839 1.0491 1.7079

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.48174 4.30409 -2.435 0.0149

Age 0.16295 0.07018 2.322 0.0202

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 51.796 on 39 degrees of freedom

Residual deviance: 45.301 on 38 degrees of freedom

AIC: 49.301

Number of Fisher Scoring iterations: 3



Interpretation of Results

The explanaory variable ‘age’ significantly contributes to the
‘success’ or ‘failure’ of the surgery, since the p-value is small
(0.0202).

Note that the data is on patients with age greater than 50 and
hence the interpretation holds only for such patients.



Fitted Values

We need to check what are the fitted values of the response
variable Y which is either 0 or 1.
Note that the model specified

E (Y ) = π =
exp(β0 + β1Age)

1 + exp(β0 + β1Age)

and with estimated values of parameter given by

β̂0 = 10.48174, β̂1 = 0.16295

we get the fitted values of Yi , given by

Ŷi = π̂i =
exp(β̂0 + β̂1Agei )

1 + exp(β̂0 + β̂1Agei )

which is between (0, 1).



Fitted Curve and Scatter Plot of Surgery Data



Logistic Regression Model as a Classifier

Now, the aim is to decide based on the fitted model whether given
the age of the patient, the patient will survive or not.

i.e, given the age, to let the model predict whether the
corresponding response is ’0’ or ’1’

This leads to classifying the patient in to two classes: survival or
death



Classification

For any classification technique, the given data is spilt into

I training data

I validation data

I test data

For logistic regression, based on the training data we need to
decide which values of predicted probability can be considered as 0
and which as 1.
i.e. we need a threshold for classification which is often decided
using the validation and test data.



Classification: Confusion Matrix

Confusion Matrix is the standard tool used for any classification
problem.
For the surgery data, the confusion matrix will be

Fact Model Based Prediction

↓ Does Not Survive Survive

Does Not Survive ∗ error

Survive error ∗

There are various measures based on the confusion matrix to
decide the appropriateness of a classifier.



Logistic regression Model as a Classifier

For any given set of explanatory variables, the model gives the
predicted response. Using the predetermined threshold value one
can classify the predicted response into one of the two classes.

Using Logistic Regression as a classifier has certain advantages
such as

I choice of threshold

I statement about the probability

I statement about the probability of misclassification

I statement about the odds ratio etc



References

1. S. Chatterjee G. Hadi (2013) Regression Analysis by
Examples

2. J. Fox (2015)Applied Regression Analysis and Generalized
Linear Models. 3rd edn, John Wiley.

3. D.C Montgomery, E. Peck G. Vinning (2012) Introduction to
Linear Regression Analysis. 5th edn, John Wiley.

4. R.H. Myers, D.C Montgomery, G.G. Vining T.J. Robinson
(2010) Generalized Linear Models: With Applications in
Engineering and the Sciences. 2nd edn, John Wiley.

5. D.W. Hosmer S. Lemeshow (2000) Applied Logisitic
Regression. 2nd edn, John Wiley.

—————————–


