Markov Chain Monte Carlo Methods: Gibbs Sampling

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University

Basic MCMC: Gibbs sampling for bivariate PDF

Gibbs sampling for a bivariate PDF $f_{X Y}(x, y)$

Assume that the two conditional PDFs $f_{Y \mid X}(y \mid x)$ and $f_{X \mid Y}(x \mid y)$ are (easily) sampleable.

Start with an arbitrary initial value x_{1}.
(1) Sample $y_{1} \sim f_{Y \mid X}\left(\cdot \mid x_{1}\right)$
$\Longrightarrow\left(x_{1}, y_{1}\right)$
(2) Sample $x_{2} \sim f_{X \mid Y}\left(\cdot \mid y_{1}\right)$
(3) Sample $y_{2} \sim f_{Y \mid X}\left(\cdot \mid x_{2}\right)$
$\Longrightarrow\left(x_{2}, y_{2}\right)$
(4) Sample $x_{3} \sim f_{X \mid Y}\left(\cdot \mid y_{2}\right)$
(5) Sample $y_{3} \sim f_{Y \mid X}\left(\cdot \mid x_{3}\right)$
$\Longrightarrow\left(x_{3}, y_{3}\right)$
(6)..

Repeat as required.

Basic MCMC: Gibbs sampling for bivariate PDF

Expressing the previous algorithm concisely
(1) Start with an arbitrary initial value x_{1}.
(2) $\left(x_{i+1}, y_{i+1}\right)$ is obtained from $\left(x_{i}, y_{i}\right)$ by sampling from the conditionals:

$$
\begin{aligned}
y_{i+1} & \sim f_{Y \mid X}\left(\cdot \mid x_{i}\right) \\
x_{i+1} & \sim f_{X \mid Y}\left(\cdot \mid y_{i+1}\right)
\end{aligned}
$$

(3) Repeat step 2 as required.

Example: Gibbs sampling for a bivariate normal density

Let

$$
\mathbf{x}=\binom{x}{y} \quad \mu=\binom{\mu_{X}}{\mu_{Y}} \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array}\right] .
$$

Let us consider the bivariate normal PDF

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{2 \pi}|\boldsymbol{\Sigma}|^{-1 / 2} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\right]
$$

where $\boldsymbol{\Sigma}^{-1}$ is the matrix inverse of $\boldsymbol{\Sigma}$:

$$
\boldsymbol{\Sigma}^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right] .
$$

The determinant $|\boldsymbol{\Sigma}|=1-\rho^{2}$.

Example: Gibbs sampling for a bivariate normal density

Marginal PDFs

$$
\begin{aligned}
f_{X}(x) & \equiv N\left(\mu_{X}, 1\right) \\
f_{Y}(y) & \equiv N\left(\mu_{Y}, 1\right)
\end{aligned}
$$

Example: Gibbs sampling for a bivariate normal density

Conditional PDFs

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{1}{\sqrt{2 \pi\left(1-\rho^{2}\right)}} \exp \left[-\frac{x-\rho y}{2\left(1-\rho^{2}\right)}\right] \equiv N\left(\rho y, 1-\rho^{2}\right) \\
& f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi\left(1-\rho^{2}\right)}} \exp \left[-\frac{y-\rho x}{2\left(1-\rho^{2}\right)}\right] \equiv N\left(\rho x, 1-\rho^{2}\right)
\end{aligned}
$$

We know how to sample from these univariate normal PDFs ...

Example: Gibbs sampling for bivariate normal

```
rbvnorm.gibbs <- function( n, x1, mu = c( 0, 0 ), rho = 0)
    {
    # Gibbs sampler for a correlated bivariate normal N( mu, Sigma2 )
    # where
    # mu = [ mu1 mu2 ]
    # and
    ## covariance matrix Sigma^2 = [ [ l llrerho ]
    stopifnot( abs( rho ) < 1, length( mu ) == 2, is.numeric( mu ) )
    r <- matrix( nrow = n, ncol = 2 )
    sd <- sqrt( 1 - rho^2 )
    r[1,1] <- x1
    r[1,2] <- rnorm( 1, mean = rho * r[1,1], sd = sd )
    for (i in 2:n )
        {
            r[i,1] <- rnorm( 1, mean = rho * r[i-1,2], sd = sd )
            r[i,2] <- rnorm( 1, mean = rho * r[i, 1], sd = sd )
        }
        cbind( r[,1] + mu[1], r[,2] + mu[2] )
    }
```


Example: Gibbs sampling for bivariate normal

$$
N\left(\left(-1,+\frac{1}{2}\right),\left[\begin{array}{cc}
+1 & -\frac{1}{2} \\
\because \frac{1}{2} & +1
\end{array}\right]\right):: \text { Gibbs : Initial trajectory }
$$

Example: Gibbs sampling for bivariate normal

$$
N\left(\left(-1,+\frac{1}{2}\right),\left[\begin{array}{cc}
+1 & -\frac{1}{2} \\
\ddots \frac{1}{2} & +1
\end{array}\right]\right):: \text { Gibbs :: A larger sample }
$$

Example: Gibbs sampling for bivariate normal

Example: Gibbs sampling for bivariate normal

Suppose that the Gibbs sampling trajectory is

$$
x_{1} \rightarrow y_{1} \rightarrow x_{2} \rightarrow y_{2} \rightarrow \ldots \rightarrow x_{t} \rightarrow y_{t} \rightarrow \ldots
$$

- Time evolution of the joint PDF of (X, Y) under this Markov chain:

$$
N\left(\left[\begin{array}{c}
\mu_{X}+\rho^{2 t} x_{1} \\
\mu_{Y}+\rho^{2 t+1} x_{1}
\end{array}\right],\left[\begin{array}{cc}
1-\rho^{4 t} & \rho\left(1-\rho^{4 t}\right) \\
\rho\left(1-\rho^{4 t}\right) & 1-\rho^{4 t}
\end{array}\right]\right)
$$

for $|\rho|<1$.

- As $t \rightarrow \infty$, this becomes

$$
N\left(\left[\begin{array}{l}
\mu_{X} \\
\mu_{Y}
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)
$$

which is the target PDF.

More examples

in the handout on the web

Gibbs for a trivariate PDF

Gibbs sampling for $f_{X Y Z}(x, y, z)$. Assume that the conditionals

$$
f_{Z \mid X Y}(z \mid x, y), f_{Y \mid X Z}(y \mid x, z), f_{X \mid Y Z}(x \mid y, z)
$$

are (easily) sampleable.
(1) Start with arbitrary initial values x_{1}, y_{1}.
(2) $\left(x_{i+1}, y_{i+1}, z_{i+1}\right)$ is obtained from $\left(x_{i}, y_{i}, z_{i}\right)$ by sampling from the conditionals:

$$
\begin{aligned}
z_{i+1} & \sim f_{Z \mid X Y}\left(\cdot \mid x_{i}, y_{i}\right) \\
y_{i+1} & \sim f_{Y \mid X Z}\left(\cdot \mid x_{i}, z_{i+1}\right) \\
x_{i+1} & \sim f_{X \mid Y Z}\left(\cdot \mid y_{i+1}, z_{i+1}\right)
\end{aligned}
$$

(3) Repeat step 2 as required.

Generalizing Gibbs for a multivariate PDF

Suppose
$f\left(x_{1}, \ldots, x_{k}\right)$: Target multivariate PDF
$f_{i}\left(x_{i} \mid x_{-i}\right)$: conditional PDF of x_{i} given everything else $\left(x_{-i}\right)$

New notation $x_{-i} \equiv$ "all variables except the i th"

Gibbs for a multivariate PDF: Sequential scan

(1) Start with arbitrary initial values x_{1}, \ldots, x_{k}.
(2) For $i=1, \ldots, k$:

Sample $x_{i} \sim f_{i}\left(\cdot \mid x_{-i}\right)$
(3) Repeat step 2 as required.

Gibbs for a multivariate PDF: Random scan

(1) Start with arbitrary initial values x_{1}, \ldots, x_{k}.
(2) For $i \in$ a random permutation of $1, \ldots, k$: Sample $x_{i} \sim f_{i}\left(\cdot \mid x_{-i}\right)$
(3) Repeat step 2 as required.

Gibbs for a multivariate PDF

- The basic variant discussed changes one variable at a time.
- Block versions, where the conditionals are expressed over groups of variables instead of single variables, are also possible.

Why Gibbs works

- Gibbs algorithm sets up a Markov chain, because the next state depends only on the current state.
- Gibbs can be shown to be a special case of Metropolis-Hastings with acceptance probability $=1$.

Gibbs as Metropolis-Hastings with $\mathrm{P}($ accept $)=1$

- $f\left(x_{1}, \ldots, x_{k}\right)$: Target multivariate PDF
- $f_{i}\left(x_{i} \mid x_{-i}\right)$: conditional PDF of x_{i} given everything else $:: x_{-i}$
- Suppose the current state of the Markov chain is $\left(x_{1}, \ldots, x_{k}\right)$.
- The Gibbs sampler is now ready to change the i th variable x_{i}.
- Think of Gibbs as Metropolis-Hastings with proposal PDF

$$
q\left(\cdot \mid x_{i}, x_{-i}\right)=f_{i}\left(\cdot \mid x_{-i}\right) .
$$

- Generate a candidate from this proposal PDF,

$$
x_{i}^{\prime} \sim f_{i}\left(\cdot \mid x_{-i}\right)
$$

Gibbs as Metropolis-Hastings with $\mathrm{P}($ accept $)=1$

Recall the Metropolis-Hastings form of the acceptance probability

$$
a(\text { proposed } \mid \text { current })=\min \left\{1, \frac{f(\text { proposed })}{f(\text { current })} \times \frac{q(\text { current } \mid \text { proposed })}{q(\text { proposed } \mid \text { current })}\right\}
$$

In our Gibbs sampling setting,

- Current state of the chain: $\left(x_{i}, x_{-i}\right)$
- Proposed state of the chain: $\left(x_{i}^{\prime}, x_{-i}\right)$

Gibbs as Metropolis-Hastings with $\mathrm{P}($ accept $)=1$

For convenience, let us write $f\left(x_{1}, \ldots, x_{k}\right)$ as $f\left(x_{i}, x_{-i}\right)$.
M-H acceptance probability for Gibbs sampling is $a\left(x_{i}^{\prime}, x_{-i} \mid x_{i}, x_{-i}\right)=\min (1, \alpha)$, where

$$
\begin{aligned}
\alpha & =\frac{f\left(x_{i}^{\prime}, x_{-i}\right)}{f\left(x_{i}, x_{-i}\right)} \times \frac{q\left(x_{i}, x_{-i} \mid x_{i}^{\prime}, x_{-i}\right)}{q\left(x_{i}^{\prime}, x_{-i} \mid x_{i}, x_{-i}\right)} \\
& =\frac{f\left(x_{i}^{\prime}, x_{-i}\right)}{f\left(x_{i}, x_{-i}\right)} \times \frac{f_{i}\left(x_{i} \mid x_{-i}\right)}{f_{i}\left(x_{i}^{\prime} \mid x_{-i}\right)} \\
& =\frac{f_{i}\left(x_{i}^{\prime} \mid x_{-i}\right) f\left(x_{-i}\right)}{f_{i}\left(x_{i} \mid x_{-i}\right) f\left(x_{-i}\right)} \times \frac{f_{i}\left(x_{i} \mid x_{-i}\right)}{f_{i}\left(x_{i}^{\prime} \mid x_{-i}\right)} \\
& =1
\end{aligned}
$$

That is, $a\left(x_{i}^{\prime}, x_{-i} \mid x_{i}, x_{-i}\right)=1$. This is true for any i.

Gibbs as Metropolis-Hastings with $\mathrm{P}($ accept $)=1$

Convergence, caveats, and burn-in/equilibration considerations applicable to M-H are also applicable to Gibbs - except for tunable parameters in the proposal PDF of $\mathrm{M}-\mathrm{H}$.

Further reading

- A classic

Explaining the Gibbs Sampler. Casella \& George, The American Statistician, Vol. 46, No. 3 (Aug., 1992), pp. 167-174. http://www.jstor.org/stable/2685208

- A perspective on comparison between Gibbs and $\mathrm{M}-\mathrm{H}$:
https://stats.stackexchange.com/questions/104815/
gibbs-sampling-versus-general-mh-mcmc
- Advanced texts with rigorous treatment of the subject
- Monte Carlo Statistical Methods. Robert \& Casella, Springer 2004
- Advanced Markov Chain Monte Carlo Methods. Liang, Liu, \& Carroll, Wiley 2010

