A probabilistic model of an epidemic

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University

An epidemic

- Suppose that an epidemic sorts people in a population in 3 states: Susceptible, Infected, Recovered.
- The government needs predictions for the daily numbers

$$
\left(S_{t}, I_{t}, R_{t}\right), t=1,2, \ldots
$$

from the initial counts $\left(S_{0}, I_{0}, R_{0}\right)$.

Modeling an epidemic as a probabilistic phenomenon

- Assume that nobody dies.

So,

$$
N=S_{t}+I_{t}+R_{t}=\text { constant }
$$

independent of t.

Modeling an epidemic as a probabilistic phenomenon

- Assume that the population size N is large.

So, we model the probability of being an

- \mathbf{S} at time $t, P_{t}(\mathbf{S}) \approx S_{t} / N$
- \mathbf{I} at time $t, P_{t}(\mathbf{I}) \approx I_{t} / N$
- \mathbf{R} at time $t, P_{t}(\mathbf{R}) \approx R_{t} / N$

Modeling an epidemic as a probabilistic phenomenon

- Assume that the population is well-mixed: Everybody interacts with everybody, everyday.

Everyday

- some of the \mathbf{S} become \mathbf{I} with probability α and some remain \mathbf{S} with probability $1-\alpha$
- some of the I become \mathbf{R} with probability β and some remain I with probability $1-\beta$
- some of the \mathbf{R} become \mathbf{S} with probability γ and some remain \mathbf{R} with probability $1-\gamma$

Interpretation
$\alpha \equiv$ probability of catching the infection
$\beta \equiv$ probability of recovering from the infection
$\gamma \equiv$ probability of losing immunity
$0 \leq \alpha, \beta, \gamma \leq 1$ are the model parameters, independent of t.

Modeling an epidemic as a probabilistic phenomenon

$$
\begin{gathered}
\\
\mathbf{S} \\
\mathbf{I} \\
\mathbf{R}
\end{gathered}\left[\begin{array}{ccc}
\mathbf{S} & \mathbf{I} & \mathbf{R} \\
1-\alpha & \alpha & 0 \\
0 & 1-\beta & \beta \\
\gamma & 0 & 1-\gamma
\end{array}\right] .
$$

Modeling an epidemic as a probabilistic phenomenon

- Assume that tomorrow's numbers

$$
\left(S_{t+1}, I_{t+1}, R_{t+1}\right)
$$

depend only on today's numbers

$$
\left(S_{t}, I_{t}, R_{t}\right)
$$

and not on the past

$$
\left(S_{t-1}, I_{t-1}, R_{t-1}\right),\left(S_{t-2}, I_{t-2}, R_{t-2}\right), \ldots,\left(S_{0}, I_{0}, R_{0}\right)
$$

How state probabilities change

$$
\begin{aligned}
& P_{t+1}(\mathbf{S})=\gamma \times P_{t}(\mathbf{R})+(1-\alpha) \times P_{t}(\mathbf{S}) \\
& P_{t+1}(\mathbf{I})=\alpha \times P_{t}=(\mathbf{S})+(1-\beta) \times P_{t}(\mathbf{I}) \\
& P_{t+1}(\mathbf{R})=\beta \times P_{t}(\mathbf{I})+(1-\gamma) \times P_{t}(\mathbf{R})
\end{aligned}
$$

Try to interpret these equations in terms of proportions instead of probabilities ...

How state probabilities change

Looking at the structure of the equations, we can arrange them nicely into a matrix form:
$\left(P_{t+1}(\mathbf{S}) P_{t+1}(\mathbf{I}) P_{t+1}(\mathbf{R})\right)=\left(P_{t}(\mathbf{S}) P_{t}(\mathbf{I}) P_{t}(\mathbf{R})\right)\left[\begin{array}{ccc}1-\alpha & \alpha & 0 \\ 0 & 1-\beta & \beta \\ \gamma & 0 & 1-\gamma\end{array}\right]$

Observations

- Each row of the matrix sums to 1 .
- $P_{t}(\mathbf{S})+P_{t}(\mathbf{I})+P_{t}(\mathbf{R})=1$ for each t.

Try to

- interpret these observations
- generalize the above equation for $t+2, t+3, \ldots$

How state probabilities change

```
# model parameters
alpha <- 0.05 # prob per time step of catching infection
beta <- 0.01 # prob per time step of recovering from infection
gamma <- 0.001 # prob per time step of losing immunity
# Markov / adjacency matrix
P <- matrix( 0, nrow = 3, ncol = 3,
    dimnames = list( c( 'S', 'I', 'R' ), c( 'S', 'I', 'R' ) ) )
P['S','I'] <- alpha
P['S','S'] <- 1 - alpha
P['I','R'] <- beta
P['I','I'] <- 1 - beta
P['R','S'] <- gamma
P['R','R'] <- 1 - gamma
stopifnot( all( rowSums( P ) == 1 ) ) # each row should sum to 1
# total time steps
n <- 500
# matrix to store the evolution of the PMF over the state space
p <- matrix( 0, nrow = n, ncol = 3, dimnames = list( NULL, c('S','I','R') ) )
# initial probability distribution
p[1,] <- c( 0.99, 0.01, 0 )
# time evolution of the PMF over the state space
for ( i in 2:n ) p[i,] <- p[i-1,] %*% P
```

How state probabilities change

How state probabilities change

Probabilities $P_{t}(\mathbf{S}), P_{t}(\mathbf{I}), P_{t}(\mathbf{R})$ appear to stabilize to t-independent values; say (a, b, c). This implies

$$
\begin{aligned}
& a=\gamma \times b+(1-\alpha) \times \\
& b=\alpha \times a \\
& b=\beta \times c+(1-\beta) \times b \\
& c=\beta \times \\
& c
\end{aligned}
$$

Solving for (a, b, c), we get

$$
\begin{aligned}
a & =\frac{1}{\alpha}\left(\frac{1}{\gamma}+\frac{1}{\beta}+\frac{1}{\alpha}\right)^{-1} \\
b & =\frac{\alpha}{\beta} a \\
c & =\frac{\alpha}{\gamma} a
\end{aligned}
$$

Activities during lockdown

- Get COVID19 or other epidemic data from any source
- Guess the parameter values for this model by trial-and-error
- Make a prediction about when the infection will reach its peak
- Incorporate lockdown in the evolution
- Gauge how well the model describes / fits to real data
- Think about how the model may be made more realistic
- Compare this model with similar agent-based and ODE models

