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An epidemic

• Suppose that an epidemic sorts people in a population in 3
states: Susceptible, Infected, Recovered.

• The government needs predictions for the daily numbers

(St , It ,Rt), t = 1, 2, . . .

from the initial counts (S0, I0,R0).



Modeling an epidemic as a probabilistic phenomenon

• Assume that nobody dies.

So,
N = St + It + Rt = constant

independent of t.



Modeling an epidemic as a probabilistic phenomenon

• Assume that the population size N is large.

So, we model the probability of being an

• S at time t, Pt(S) ≈ St/N
• I at time t, Pt(I) ≈ It/N
• R at time t, Pt(R) ≈ Rt/N



Modeling an epidemic as a probabilistic phenomenon

• Assume that the population is well-mixed: Everybody
interacts with everybody, everyday.

Everyday

• some of the S become I with probability α
and some remain S with probability 1 − α

• some of the I become R with probability β
and some remain I with probability 1 − β

• some of the R become S with probability γ
and some remain R with probability 1 − γ

Interpretation

α ≡ probability of catching the infection

β ≡ probability of recovering from the infection

γ ≡ probability of losing immunity

0 ≤ α, β, γ ≤ 1 are the model parameters, independent of t.



Modeling an epidemic as a probabilistic phenomenon
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Modeling an epidemic as a probabilistic phenomenon

• Assume that tomorrow’s numbers

(St+1, It+1,Rt+1)

depend only on today’s numbers

(St , It ,Rt)

and not on the past

(St−1, It−1,Rt−1), (St−2, It−2,Rt−2), . . . , (S0, I0,R0)



How state probabilities change

Pt+1(S) = γ × Pt(R) + (1 − α) × Pt(S)
Pt+1(I) = α × Pt(S) + (1 − β) × Pt(I)
Pt+1(R) = β × Pt(I) + (1 − γ) × Pt(R)

Try to interpret these equations in terms of proportions instead of
probabilities ...



How state probabilities change

Looking at the structure of the equations, we can arrange them
nicely into a matrix form:

(Pt+1(S) Pt+1(I) Pt+1(R)) = (Pt(S) Pt(I) Pt(R))

 1 − α α 0
0 1 − β β
γ 0 1 − γ



Observations

• Each row of the matrix sums to 1.

• Pt(S) + Pt(I) + Pt(R) = 1 for each t.

Try to

• interpret these observations

• generalize the above equation for t + 2, t + 3, . . .



How state probabilities change

# model parameters

alpha <- 0.05 # prob per time step of catching infection

beta <- 0.01 # prob per time step of recovering from infection

gamma <- 0.001 # prob per time step of losing immunity

# Markov / adjacency matrix

P <- matrix( 0, nrow = 3, ncol = 3,

dimnames = list( c( ’S’, ’I’, ’R’ ), c( ’S’, ’I’, ’R’ ) ) )

P[’S’,’I’] <- alpha

P[’S’,’S’] <- 1 - alpha

P[’I’,’R’] <- beta

P[’I’,’I’] <- 1 - beta

P[’R’,’S’] <- gamma

P[’R’,’R’] <- 1 - gamma

stopifnot( all( rowSums( P ) == 1 ) ) # each row should sum to 1

# total time steps

n <- 500

# matrix to store the evolution of the PMF over the state space

p <- matrix( 0, nrow = n, ncol = 3, dimnames = list( NULL , c(’S’,’I’,’R’) ) )

# initial probability distribution

p[1,] <- c( 0.99, 0.01, 0 )

# time evolution of the PMF over the state space

for ( i in 2:n ) p[i,] <- p[i-1,] %*% P



How state probabilities change
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How state probabilities change

Probabilities Pt(S),Pt(I),Pt(R) appear to stabilize to
t-independent values; say (a, b, c). This implies

a = γ × b + (1 − α) × a
b = α × a + (1 − β) × b
c = β × c + (1 − γ) × c

Solving for (a, b, c), we get
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Activities during lockdown

• Get COVID19 or other epidemic data from any source

• Guess the parameter values for this model by trial-and-error

• Make a prediction about when the infection will reach its peak

• Incorporate lockdown in the evolution

• Gauge how well the model describes / fits to real data

• Think about how the model may be made more realistic

• Compare this model with similar agent-based and ODE models


