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pmf over the state space X

Probability of observing state i at time t,

pi (t) = P(Xt = i)

pmf over the state space X = {1, . . . , k} at time t:

p(t) = (p1(t), . . . , pk(t))

with
k∑

i=1

pi (t) = 1



pmf over the state space X

Interpretation

• Imagine a very large ensemble (i.e., collection) of identical
systems described/modeled by the same Markov chain (tpm).

• Each system evolves independently under the same dynamics
described by the tpm.

• Take a snapshot of the ensemble at time t.

• Then pi (t) ≈ the proportion of systems in state i .



Evolution of the pmf over the state space X

How does p(t) evolve over one time step?

Total probability of state i at time t + 1:

pi (t + 1) = P(Xt+1 = i) =
k∑

j=1

P(Xt+1 = i |Xt = j)× P(Xt = j)

=
k∑

j=1

Pji × pj(t) =
k∑

j=1

pj(t)× Pji = (p(t)× P)i .

Hence
p(t + 1) = p(t)× P.

Note

• p(t) = (p1(t), . . . , pk(t)) is interpreted as a row vector.

• The equation is linear in p.

• p(t)× P is a row vector - square matrix multiplication.



Evolution of the pmf over the state space X

How does p(t) evolve over time t = 1, 2, . . .?

p(t) = p(t − 1)× P
= (p(t − 2)× P)× P = p(t − 2)× P2

= . . .

= p(1)× Pt−1.

Note

• State space X = {1, . . . , k}, and t = 1, 2, . . . .

• p(t) = (p1(t), . . . , pk(t)) ::
row vector representing the pmf over X at time t.

• The equation is linear in p.



Evolution of the pmf: Numerical example

P =

 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2


p(1) =

[
1 0 0

]
p(2) =

[
0.5000000 0.2500000 0.2500000

]
p(3) =

[
0.4375000 0.1875000 0.3750000

]
p(4) =

[
0.4062500 0.2031250 0.3906250

]
p(5) ≈

[
0.4023438 0.1992188 0.3984375

]
p(6) ≈

[
0.4003906 0.2001953 0.3994141

]
p(7) ≈

[
0.4001465 0.1999512 0.3999023

]
p(8) ≈

[
0.4000244 0.2000122 0.3999634

]
p(9) ≈

[
0.4000092 0.1999969 0.3999939

]
...

p(∞) =
[

2/5 1/5 2/5
]



Evolution of the pmf: Numerical example

P =

 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2


p(1) =

[
0 1 0

]
p(2) =

[
0.5000000 0.0000000 0.5000000

]
p(3) =

[
0.3750000 0.2500000 0.3750000

]
p(4) =

[
0.4062500 0.1875000 0.4062500

]
p(5) ≈

[
0.3984375 0.2031250 0.3984375

]
p(6) ≈

[
0.4003906 0.1992188 0.4003906

]
p(7) ≈

[
0.3999023 0.2001953 0.3999023

]
p(8) ≈

[
0.4000244 0.1999512 0.4000244

]
p(9) ≈

[
0.3999939 0.2000122 0.3999939

]
...

p(∞) =
[

2/5 1/5 2/5
]



Evolution of the pmf: Numerical example

P =

 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2


p(1) =

[
1/3 1/3 1/3

]
p(2) =

[
0.4166667 0.1666667 0.4166667

]
p(3) =

[
0.3958333 0.2083333 0.3958333

]
p(4) =

[
0.4010417 0.1979167 0.4010417

]
p(5) =

[
0.3997396 0.2005208 0.3997396

]
p(6) =

[
0.4000651 0.1998698 0.4000651

]
p(7) =

[
0.3999837 0.2000326 0.3999837

]
p(8) =

[
0.4000041 0.1999919 0.4000041

]
p(9) =

[
0.3999990 0.2000020 0.3999990

]
...

p(∞) =
[

2/5 1/5 2/5
]



Evolution of the pmf: Analytical example

Suppose

• P =

[
1− p p
q 1− q

]
with 0 ≤ p, q ≤ 1.

• p(1) =
[
α 1− α

]
with 0 ≤ α ≤ 1.

It can be shown that1

• P t =
1

p + q

[
q p
q p

]
+

(1− p − q)t

p + q

[
p −p
−q q

]
• lim

t→∞
P t =

1

p + q

[
q p
q p

]
• lim

t→∞
p(t) =

1

p + q

[
q p

]

1
www.probabilitycourse.com/chapter11/11 2 6 stationary and limiting distributions.php

https://www.probabilitycourse.com/chapter11/11_2_6_stationary_and_limiting_distributions.php


Limiting pmf of a Markov chain

Definition. A pmf π over the state space X is called limiting pmf if
πi = lim

t→∞
pi (t) for every 1 ≤ i ≤ k ; i.e., if the sequence of pmfs

p(1) = (p1(1), . . . , pk(1))

p(2) = (p1(2), . . . , pk(2))

...

converges to π = (π1, . . . , πk).

Markov matrix P limiting pmf π 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2

 [
2/5 1/5 2/5

]

[
1− p p
q 1− q

]
1

p+q

[
q p

]
for p + q > 0



Limiting pmf of a Markov chain

Given

• the linearity of the pmf evolution equation

p(t) = p(1)Pt−1

• that p(1) is an arbitrary pmf,

the only way in which a pmf π = (π1, . . . , πk) can be a limiting
distribution is if

lim
t→∞

Pt =


π1 π2 . . . πk
π1 π2 . . . πk
...

...
...

...
π1 π2 . . . πk

 .



Limiting pmf of a Markov chain

Not every Markov chain necessarily has a limiting PMF

See examples in
https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf


Stationary pmf of a Markov chain

Definition. A pmf π over the state space X is called stationary if

π = πP.

Stationarity =⇒ π is a left eigenvector of P with eigenvalue 1.



Stationary pmf of a Markov chain

Markov matrix P stationary pmf π 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2

 [
2/5 1/5 2/5

]

[
0 1
1 0

] [
1/2 1/2

]
[

1− p p
q 1− q

]
1

p+q

[
q p

]
for p + q > 0

[
1 0
0 1

] [
p 1− p

]
for every 0 ≤ p ≤ 1 :: non-unique!



Stationary pmf of a Markov chain

Stationary PMF need not be unique

P =

 1 0 0
1/3 1/3 1/3

0 0 1


has a 2-fold degenerate unit eigenvalue. Linear combinations
π = w1π1 + w2π2 of

π1 = [ 3/4 0 1/4 ]

π2 = [ 2/3 0 1/3 ]

with w1,w2 ≥ 0,w1 + w2 = 1 are all stationary pmfs of P.

Example from Sec. 6.2 in http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf

https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf

http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf
https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution
https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf


Stationary pmf of a Markov chain

Not every Markov chain necessarily has a stationary PMF

1 2 3 4 · · ·

1 1 1 1

https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution

https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution


Stationary pmf of a Markov chain

Not every Markov chain necessarily has a stationary PMF

· · · 1 2 3 · · ·

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf


Relationship between stationary and limiting pmfs

Limiting PMFs are stationary, but not vice versa

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf


Markov chains with a unique stationary limiting pmf

A class of Markov chains called ergodic (irreducible) or regular
chains.

For details:

• Introduction to Probability by Grinstead & Snell, American Mathematical
Society (1997) Sec. 11.3

• http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf

• https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf

This class is at the heart of Markov chain Monte Carlo (MCMC)
methods.

https://math.dartmouth.edu/~prob/prob/prob.pdf
https://math.dartmouth.edu/~prob/prob/prob.pdf
http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf
https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf


Connection with sampling and “simulation”

Markov chain Monte Carlo (MCMC) methods

Sampling from (and integrating with respect to) an arbitrary
high-dimensional pdf / pmf f is done by setting up a Markov
chain that has f as its unique stationary limiting distribution.



Master equation and stationarity

Change in the probability of ith state between t and t + 1

pi (t + 1)− pi (t) =
k∑

j=1

pj(t)Pji − pi (t)× 1

=
k∑

j=1

pj(t)Pji − pi (t)×

 k∑
j=1

Pij


=

k∑
j=1

pj(t)Pji −
k∑

j=1

pi (t)Pij

= (Net inflow into state i)− (Net outflow from state i).

If p is stationary, then lhs = 0 for every state i ; i.e., net inflow into and
net outflow out of state i are balanced.



Master equation and stationarity

Same argument, but starting with stationarity this time. Suppose π = πP. Then

πi =
k∑

j=1

πjPji

1× πi =
k∑

j=1

πjPji

 k∑
j=1

Pij

× πi =
k∑

j=1

πjPji

k∑
j=1

Pijπi =
k∑

j=1

πjPji

Net probability outflow from state i = Net probability inflow into state i

Stationarity of π can thus be viewed as balance of inflow and outflow of probabilities.
Rearranging the above, one gets the Master equation:

k∑
j=1

(
Pijπi − πjPji

)
= 0 for each i .



Condition of detailed balance

Master equation

k∑
j=1

(Pijπi − πjPji ) = 0 for each i .

One possible way in which the Master equation will hold true is if
each term above is separately = 0; i.e.,

Pijπi − πjPji = 0 for each pair of states i , j .

This is called the condition of detailed balance: It is sufficient to
ensure stationarity of f , but not necessary.

This condition is at the heart of Markov chain Monte Carlo
(MCMC) methods.


