## Markov chains 4

### Mihir Arjunwadkar

Centre for Modeling and Simulation Savitribai Phule Pune University

## $_{\rm PMF}$ over the state space ${\cal X}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Probability of observing state i at time t,

$$p_i(t) = P(X_t = i)$$

PMF over the state space  $\mathcal{X} = \{1, \dots, k\}$  at time *t*:

$$p(t) = (p_1(t), \ldots, p_k(t))$$

with

$$\sum_{i=1}^k p_i(t) = 1$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

### Interpretation

- Imagine a very large *ensemble* (i.e., collection) of identical systems described/modeled by the same Markov chain (TPM).
- Each system evolves independently under the same *dynamics* described by the TPM.
- Take a snapshot of the ensemble at time t.
- Then  $p_i(t) \approx$  the proportion of systems in state *i*.

## Evolution of the ${\rm PMF}$ over the state space ${\cal X}$

How does p(t) evolve over one time step? Total probability of state *i* at time t + 1:

$$\begin{array}{ll} p_i(t+1) &=& P(X_{t+1}=i) = \sum_{j=1}^k P(X_{t+1}=i|X_t=j) \times P(X_t=j) \\ &=& \sum_{j=1}^k \mathcal{P}_{ji} \times p_j(t) = \sum_{j=1}^k p_j(t) \times \mathcal{P}_{ji} = (p(t) \times \mathcal{P})_i. \end{array}$$

Hence

$$p(t+1) = p(t) \times \mathcal{P}.$$

Note

- $p(t) = (p_1(t), \dots, p_k(t))$  is interpreted as a row vector.
- The equation is *linear* in *p*.
- $p(t) \times \mathcal{P}$  is a row vector square matrix multiplication.

### Evolution of the PMF over the state space $\mathcal{X}$

How does p(t) evolve over time t = 1, 2, ...?

$$\begin{array}{lll} p(t) &=& p(t-1) \times \mathcal{P} \\ &=& (p(t-2) \times \mathcal{P}) \times \mathcal{P} = p(t-2) \times \mathcal{P}^2 \\ &=& \dots \\ &=& p(1) \times \mathcal{P}^{t-1}. \end{array}$$

Note

- State space  $\mathcal{X} = \{1, \ldots, k\}$ , and  $t = 1, 2, \ldots$  .
- p(t) = (p<sub>1</sub>(t),..., p<sub>k</sub>(t)) :: row vector representing the PMF over X at time t.
- The equation is *linear* in *p*.

## Evolution of the PMF: Numerical example

$$\mathcal{P} = \left[ egin{array}{cccc} 1/2 & 1/4 & 1/4 \ 1/2 & 0 & 1/2 \ 1/4 & 1/4 & 1/2 \end{array} 
ight]$$

 $p(1) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ 

| p(2)         | =         | 0.5000000 | 0.2500000 | 0.2500000 ] |
|--------------|-----------|-----------|-----------|-------------|
| <i>p</i> (3) | =         | 0.4375000 | 0.1875000 | 0.3750000 ] |
| <i>p</i> (4) | =         | 0.4062500 | 0.2031250 | 0.3906250 ] |
| p(5)         | $\approx$ | 0.4023438 | 0.1992188 | 0.3984375 ] |
| <i>p</i> (6) | $\approx$ | 0.4003906 | 0.2001953 | 0.3994141 ] |
| p(7)         | $\approx$ | 0.4001465 | 0.1999512 | 0.3999023 ] |
| p(8)         | $\approx$ | 0.4000244 | 0.2000122 | 0.3999634 ] |
| p(9)         | $\approx$ | 0.4000092 | 0.1999969 | 0.3999939 ] |

 $p(\infty) = [2/5 \ 1/5 \ 2/5]$ 

÷

・ロト・日本・日本・日本・日本・今日や

## Evolution of the PMF: Numerical example

・ロト・日本・日本・日本・日本・今日や

$$\mathcal{P} = \left[ egin{array}{cccc} 1/2 & 1/4 & 1/4 \ 1/2 & 0 & 1/2 \ 1/4 & 1/4 & 1/2 \end{array} 
ight]$$

 $p(1) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ 

| p(2)         | =         | 0.5000000 | 0.0000000 | 0.5000000 ] |
|--------------|-----------|-----------|-----------|-------------|
| <i>p</i> (3) | =         | 0.3750000 | 0.2500000 | 0.3750000 ] |
| <i>p</i> (4) | =         | 0.4062500 | 0.1875000 | 0.4062500 ] |
| p(5)         | $\approx$ | 0.3984375 | 0.2031250 | 0.3984375 ] |
| <i>p</i> (6) | $\approx$ | 0.4003906 | 0.1992188 | 0.4003906 ] |
| p(7)         | $\approx$ | 0.3999023 | 0.2001953 | 0.3999023 ] |
| p(8)         | $\approx$ | 0.4000244 | 0.1999512 | 0.4000244 ] |
| p(9)         | $\approx$ | 0.3999939 | 0.2000122 | 0.3999939 ] |

 $p(\infty) = [2/5 \ 1/5 \ 2/5]$ 

÷

## Evolution of the PMF: Numerical example

・ロト・日本・日本・日本・日本・今日や

$$\mathcal{P} = \left[ egin{array}{cccc} 1/2 & 1/4 & 1/4 \ 1/2 & 0 & 1/2 \ 1/4 & 1/4 & 1/2 \end{array} 
ight]$$

 $p(1) = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$ 

| p(2)         | = | 0.4166667   | 0.1666667 | 0.4166667 ] |
|--------------|---|-------------|-----------|-------------|
| <i>p</i> (3) | = | 0.3958333   | 0.2083333 | 0.3958333 ] |
| <i>p</i> (4) | = | [ 0.4010417 | 0.1979167 | 0.4010417 ] |
| p(5)         | = | 0.3997396   | 0.2005208 | 0.3997396 ] |
| <i>p</i> (6) | = | 0.4000651   | 0.1998698 | 0.4000651 ] |
| p(7)         | = | 0.3999837   | 0.2000326 | 0.3999837 ] |
| p(8)         | = | [ 0.4000041 | 0.1999919 | 0.4000041 ] |
| p(9)         | = | 0.3999990   | 0.2000020 | 0.3999990 ] |

 $p(\infty) = [2/5 \ 1/5 \ 2/5]$ 

•

## Evolution of the PMF: Analytical example

Suppose

• 
$$\mathcal{P} = \begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix}$$
 with  $0 \le p, q \le 1$ .  
•  $p(1) = \begin{bmatrix} \alpha & 1-\alpha \end{bmatrix}$  with  $0 \le \alpha \le 1$ .

It can be shown that<sup>1</sup>

• 
$$\mathcal{P}^{t} = \frac{1}{p+q} \begin{bmatrix} q & p \\ q & p \end{bmatrix} + \frac{(1-p-q)^{t}}{p+q} \begin{bmatrix} p & -p \\ -q & q \end{bmatrix}$$
  
•  $\lim_{t \to \infty} \mathcal{P}^{t} = \frac{1}{p+q} \begin{bmatrix} q & p \\ q & p \end{bmatrix}$   
•  $\lim_{t \to \infty} p(t) = \frac{1}{p+q} \begin{bmatrix} q & p \end{bmatrix}$ 

## Limiting PMF of a Markov chain

**Definition.** A PMF  $\pi$  over the state space  $\mathcal{X}$  is called *limiting* PMF if  $\pi_i = \lim_{t \to \infty} p_i(t)$  for every  $1 \le i \le k$ ; i.e., if the sequence of PMFs

$$p(1) = (p_1(1), \dots, p_k(1))$$
  

$$p(2) = (p_1(2), \dots, p_k(2))$$
  

$$\vdots$$

converges to  $\pi = (\pi_1, \ldots, \pi_k)$ .

| Markov matrix ${\cal P}$                                                                           | limiting PMF $\pi$                                                       |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| $\left[\begin{array}{rrrr} 1/2 & 1/4 & 1/4 \\ 1/2 & 0 & 1/2 \\ 1/4 & 1/4 & 1/2 \end{array}\right]$ | [ 2/5 1/5 2/5 ]                                                          |  |
| $\left[\begin{array}{rrr} 1-p & p \\ q & 1-q \end{array}\right]$                                   | $\frac{1}{p+q} \begin{bmatrix} q & p \end{bmatrix} \text{ for } p+q > 0$ |  |

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

## Limiting PMF of a Markov chain

٠

\*ロ \* \* ● \* \* ● \* \* ● \* ● \* ● \* ●

Given

• the linearity of the PMF evolution equation

$$p(t) = p(1)\mathcal{P}^{t-1}$$

• that p(1) is an arbitrary PMF,

the only way in which a PMF  $\pi = (\pi_1, \ldots, \pi_k)$  can be a limiting distribution is if

$$\lim_{t \to \infty} \mathcal{P}^t = \begin{bmatrix} \pi_1 & \pi_2 & \dots & \pi_k \\ \pi_1 & \pi_2 & \dots & \pi_k \\ \vdots & \vdots & \vdots & \vdots \\ \pi_1 & \pi_2 & \dots & \pi_k \end{bmatrix}$$

## Limiting PMF of a Markov chain

### Not every Markov chain necessarily has a limiting PMF

### See examples in

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4\_6up.pdf

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

#### **Definition.** A PMF $\pi$ over the state space $\mathcal{X}$ is called *stationary* if

 $\pi = \pi \mathcal{P}.$ 

### Stationarity $\implies \pi$ is a left eigenvector of $\mathcal{P}$ with eigenvalue 1.

# Stationary $\ensuremath{\operatorname{PMF}}$ of a Markov chain

| Markov matrix ${\cal P}$                                                                           | stationary PMF $\pi$                                                             |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
| $\left[\begin{array}{rrrr} 1/2 & 1/4 & 1/4 \\ 1/2 & 0 & 1/2 \\ 1/4 & 1/4 & 1/2 \end{array}\right]$ | [ 2/5 1/5 2/5 ]                                                                  |  |  |  |
| $\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]$                                        | $\begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$                                        |  |  |  |
| $\left[\begin{array}{cc} 1-p & p \\ q & 1-q \end{array}\right]$                                    | $\frac{1}{p+q} \begin{bmatrix} q & p \end{bmatrix} \text{ for } p+q > 0$         |  |  |  |
| $\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$                                               | $\begin{bmatrix} p & 1-p \end{bmatrix}$ for every $0 \le p \le 1$ :: non-unique! |  |  |  |

#### Stationary PMF need not be unique

$$\mathcal{P} = \left[egin{array}{cccc} 1 & 0 & 0 \ 1/3 & 1/3 & 1/3 \ 0 & 0 & 1 \end{array}
ight]$$

has a 2-fold degenerate unit eigenvalue. Linear combinations  $\pi = w_1 \pi_1 + w_2 \pi_2$  of

| $\pi_1$ | = | [ 3/4 | 0 | 1/4 ] |
|---------|---|-------|---|-------|
| $\pi_2$ | = | [ 2/3 | 0 | 1/3 ] |

with  $w_1, w_2 \ge 0, w_1 + w_2 = 1$  are all stationary PMFs of  $\mathcal{P}$ .

Example from Sec. 6.2 in http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution https://galton.uchicago.edu/-yibi/teaching/stat317/2014/Lectures/Lecture4\_6up.pdf

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

#### Not every Markov chain necessarily has a stationary PMF



https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution

### Not every Markov chain necessarily has a stationary PMF



https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4\_6up.pdf

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

## Relationship between stationary and limiting PMFs

### Limiting PMFs are stationary, but not vice versa

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4\_6up.pdf



# Markov chains with a unique stationary limiting ${\rm PMF}$

A class of Markov chains called *ergodic* (*irreducible*) or *regular* chains.

For details:

- Introduction to Probability by Grinstead & Snell, American Mathematical Society (1997) Sec. 11.3
- http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf
- https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf

This class is at the heart of Markov chain Monte Carlo (MCMC) methods.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

## Connection with sampling and "simulation"

### Markov chain Monte Carlo (MCMC) methods

Sampling from (and integrating with respect to) an arbitrary high-dimensional PDF / PMF f is done by setting up a Markov chain that has f as its unique stationary limiting distribution.

## Master equation and stationarity

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Change in the probability of *i*th state between t and t + 1

$$p_i(t+1) - p_i(t) = \sum_{j=1}^k p_j(t) \mathcal{P}_{ji} - p_i(t) \times 1$$
  
$$= \sum_{j=1}^k p_j(t) \mathcal{P}_{ji} - p_i(t) \times \left(\sum_{j=1}^k \mathcal{P}_{ij}\right)$$
  
$$= \sum_{j=1}^k p_j(t) \mathcal{P}_{ji} - \sum_{j=1}^k p_i(t) \mathcal{P}_{ij}$$
  
$$= (\text{Net inflow into state } i) - (\text{Net outflow from state } i).$$

If p is stationary, then LHS = 0 for every state i; i.e., net inflow into and net outflow out of state i are balanced.

## Master equation and stationarity

Same argument, but starting with stationarity this time. Suppose  $\pi = \pi \mathcal{P}$ . Then

$$\pi_{i} = \sum_{j=1}^{k} \pi_{j} \mathcal{P}_{ji}$$

$$1 \times \pi_{i} = \sum_{j=1}^{k} \pi_{j} \mathcal{P}_{ji}$$

$$\sum_{j=1}^{k} \mathcal{P}_{ij} \times \pi_{i} = \sum_{j=1}^{k} \pi_{j} \mathcal{P}_{ji}$$

$$\sum_{j=1}^{k} \mathcal{P}_{ij} \pi_{i} = \sum_{j=1}^{k} \pi_{j} \mathcal{P}_{ji}$$

Net probability outflow from state i = Net probability inflow into state i

Stationarity of  $\pi$  can thus be viewed as balance of inflow and outflow of probabilities. Rearranging the above, one gets the *Master equation*:

$$\sum_{j=1}^k \left( \mathcal{P}_{ij} \pi_i - \pi_j \mathcal{P}_{ji} 
ight) = 0$$
 for each  $i$ .

## Condition of detailed balance

Master equation

$$\sum_{j=1}^{k} \left( \mathcal{P}_{ij} \pi_i - \pi_j \mathcal{P}_{ji} \right) = 0 \text{ for each } i.$$

One possible way in which the Master equation will hold true is if each term above is separately = 0; i.e.,

$$\mathcal{P}_{ij}\pi_i - \pi_j \mathcal{P}_{ji} = 0$$
 for each pair of states  $i, j$ .

This is called the condition of *detailed balance*: It is *sufficient* to ensure stationarity of *f*, but not *necessary*.

This condition is at the heart of Markov chain Monte Carlo (MCMC) methods.