Markov chains 4

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University

PMF over the state space \mathcal{X}

Probability of observing state i at time t,

$$
p_{i}(t)=P\left(X_{t}=i\right)
$$

PMF over the state space $\mathcal{X}=\{1, \ldots, k\}$ at time t :

$$
p(t)=\left(p_{1}(t), \ldots, p_{k}(t)\right)
$$

with

$$
\sum_{i=1}^{k} p_{i}(t)=1
$$

PMF over the state space \mathcal{X}

Interpretation

- Imagine a very large ensemble (i.e., collection) of identical systems described/modeled by the same Markov chain (TPM).
- Each system evolves independently under the same dynamics described by the TPM.
- Take a snapshot of the ensemble at time t.
- Then $p_{i}(t) \approx$ the proportion of systems in state i.

Evolution of the PMF over the state space \mathcal{X}

How does $p(t)$ evolve over one time step?
Total probability of state i at time $t+1$:

$$
\begin{aligned}
p_{i}(t+1) & =P\left(X_{t+1}=i\right)=\sum_{j=1}^{k} P\left(X_{t+1}=i \mid X_{t}=j\right) \times P\left(X_{t}=j\right) \\
& =\sum_{j=1}^{k} \mathcal{P}_{j i} \times p_{j}(t)=\sum_{j=1}^{k} p_{j}(t) \times \mathcal{P}_{j i}=(p(t) \times \mathcal{P})_{i}
\end{aligned}
$$

Hence

$$
p(t+1)=p(t) \times \mathcal{P}
$$

Note

- $p(t)=\left(p_{1}(t), \ldots, p_{k}(t)\right)$ is interpreted as a row vector.
- The equation is linear in p.
- $p(t) \times \mathcal{P}$ is a row vector - square matrix multiplication.

Evolution of the PMF over the state space \mathcal{X}

How does $p(t)$ evolve over time $t=1,2, \ldots$?

$$
\begin{aligned}
p(t) & =p(t-1) \times \mathcal{P} \\
& =(p(t-2) \times \mathcal{P}) \times \mathcal{P}=p(t-2) \times \mathcal{P}^{2} \\
& =\cdots \\
& =p(1) \times \mathcal{P}^{t-1} .
\end{aligned}
$$

Note

- State space $\mathcal{X}=\{1, \ldots, k\}$, and $t=1,2, \ldots$.
- $p(t)=\left(p_{1}(t), \ldots, p_{k}(t)\right)::$
row vector representing the PMF over \mathcal{X} at time t.
- The equation is linear in p.

Evolution of the PMF: Numerical example

$$
\begin{aligned}
\mathcal{P} & =\left[\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \\
p(1) & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
p(2) & =\left[\begin{array}{lll}
0.5000000 & 0.2500000 & 0.2500000
\end{array}\right] \\
p(3) & =\left[\begin{array}{lll}
0.4375000 & 0.1875000 & 0.3750000
\end{array}\right] \\
p(4) & =\left[\begin{array}{lll}
0.4062500 & 0.2031250 & 0.3906250
\end{array}\right] \\
p(5) & \approx\left[\begin{array}{lll}
0.4023438 & 0.1992188 & 0.3984375
\end{array}\right] \\
p(6) & \approx\left[\begin{array}{lll}
0.4003906 & 0.2001953 & 0.3994141
\end{array}\right] \\
p(7) & \approx\left[\begin{array}{lll}
0.4001465 & 0.1999512 & 0.3999023
\end{array}\right] \\
p(8) & \approx\left[\begin{array}{lll}
0.4000244 & 0.2000122 & 0.3999634
\end{array}\right] \\
p(9) & \approx\left[\begin{array}{lll}
0.4000092 & 0.1999969 & 0.3999939
\end{array}\right] \\
& \vdots \\
p(\infty) & =\left[\begin{array}{lll}
2 / 5 & 1 / 5 & 2 / 5
\end{array}\right]
\end{aligned}
$$

Evolution of the PMF: Numerical example

$$
\begin{aligned}
\mathcal{P} & =\left[\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \\
p(1) & =\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \\
p(2) & =\left[\begin{array}{lll}
0.5000000 & 0.0000000 & 0.5000000
\end{array}\right] \\
p(3) & =\left[\begin{array}{lll}
0.3750000 & 0.2500000 & 0.3750000
\end{array}\right] \\
p(4) & =\left[\begin{array}{lll}
0.4062500 & 0.1875000 & 0.4062500
\end{array}\right] \\
p(5) & \approx\left[\begin{array}{lll}
0.3984375 & 0.2031250 & 0.3984375
\end{array}\right] \\
p(6) & \approx\left[\begin{array}{lll}
0.4003906 & 0.1992188 & 0.4003906
\end{array}\right] \\
p(7) & \approx\left[\begin{array}{lll}
0.3999023 & 0.2001953 & 0.3999023
\end{array}\right] \\
p(8) & \approx\left[\begin{array}{lll}
0.4000244 & 0.1999512 & 0.4000244
\end{array}\right] \\
p(9) & \approx\left[\begin{array}{lll}
0.3999939 & 0.2000122 & 0.3999939
\end{array}\right] \\
& \vdots \\
p(\infty) & =\left[\begin{array}{lll}
2 / 5 & 1 / 5 & 2 / 5
\end{array}\right]
\end{aligned}
$$

Evolution of the PMF: Numerical example

$$
\begin{aligned}
\mathcal{P} & =\left[\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \\
p(1) & =\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] \\
p(2) & =\left[\begin{array}{lll}
0.4166667 & 0.1666667 & 0.4166667
\end{array}\right] \\
p(3) & =\left[\begin{array}{lll}
0.3958333 & 0.2083333 & 0.3958333
\end{array}\right] \\
p(4) & =\left[\begin{array}{lll}
0.4010417 & 0.1979167 & 0.4010417
\end{array}\right] \\
p(5) & =\left[\begin{array}{lll}
0.3997396 & 0.2005208 & 0.3997396
\end{array}\right] \\
p(6) & =\left[\begin{array}{lll}
0.4000651 & 0.1998698 & 0.4000651
\end{array}\right] \\
p(7) & =\left[\begin{array}{lll}
0.3999837 & 0.2000326 & 0.3999837
\end{array}\right] \\
p(8) & =\left[\begin{array}{lll}
0.4000041 & 0.1999919 & 0.4000041
\end{array}\right] \\
p(9) & =\left[\begin{array}{lll}
0.3999990 & 0.2000020 & 0.3999990
\end{array}\right] \\
& \vdots \\
p(\infty) & =\left[\begin{array}{lll}
2 / 5 & 1 / 5 & 2 / 5
\end{array}\right]
\end{aligned}
$$

Evolution of the PMF: Analytical example

Suppose

- $\mathcal{P}=\left[\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right]$ with $0 \leq p, q \leq 1$.
- $p(1)=\left[\begin{array}{ll}\alpha & 1-\alpha\end{array}\right]$ with $0 \leq \alpha \leq 1$.

It can be shown that ${ }^{1}$

- $\mathcal{P}^{t}=\frac{1}{p+q}\left[\begin{array}{ll}q & p \\ q & p\end{array}\right]+\frac{(1-p-q)^{t}}{p+q}\left[\begin{array}{cc}p & -p \\ -q & q\end{array}\right]$
- $\lim _{t \rightarrow \infty} \mathcal{P}^{t}=\frac{1}{p+q}\left[\begin{array}{ll}q & p \\ q & p\end{array}\right]$
- $\lim _{t \rightarrow \infty} p(t)=\frac{1}{p+q}\left[\begin{array}{ll}q & p\end{array}\right]$

Limiting PMF of a Markov chain

Definition. A pmF π over the state space \mathcal{X} is called limiting pmF if $\pi_{i}=\lim _{t \rightarrow \infty} p_{i}(t)$ for every $1 \leq i \leq k$; i.e., if the sequence of PMFs

$$
\begin{aligned}
p(1) & =\left(p_{1}(1), \ldots, p_{k}(1)\right) \\
p(2) & =\left(p_{1}(2), \ldots, p_{k}(2)\right)
\end{aligned}
$$

converges to $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$.

Markov matrix \mathcal{P}	limiting PMF π
$\left[\begin{array}{ccc}1 / 2 & 1 / 4 & 1 / 4 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 4 & 1 / 4 & 1 / 2\end{array}\right]$	$\left[\begin{array}{lll}2 / 5 & 1 / 5 & 2 / 5\end{array}\right]$
$\left[\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right]$	$\frac{1}{p+q}\left[\begin{array}{ll}q & p\end{array}\right]$ for $p+q>0$

Limiting PMF of a Markov chain

Given

- the linearity of the PMF evolution equation

$$
p(t)=p(1) \mathcal{P}^{t-1}
$$

- that $p(1)$ is an arbitrary PMF, the only way in which a PMF $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$ can be a limiting distribution is if

$$
\lim _{t \rightarrow \infty} \mathcal{P}^{t}=\left[\begin{array}{cccc}
\pi_{1} & \pi_{2} & \ldots & \pi_{k} \\
\pi_{1} & \pi_{2} & \ldots & \pi_{k} \\
\vdots & \vdots & \vdots & \vdots \\
\pi_{1} & \pi_{2} & \ldots & \pi_{k}
\end{array}\right]
$$

Limiting PMF of a Markov chain

Not every Markov chain necessarily has a limiting PMF

See examples in
https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf

Stationary PMF of a Markov chain

Definition. A PMF π over the state space \mathcal{X} is called stationary if

$$
\pi=\pi \mathcal{P}
$$

Stationarity $\Longrightarrow \pi$ is a left eigenvector of \mathcal{P} with eigenvalue 1.

Stationary PMF of a Markov chain

Markov matrix \mathcal{P}	stationary PMF π
$\left[\begin{array}{ccc}1 / 2 & 1 / 4 & 1 / 4 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 4 & 1 / 4 & 1 / 2\end{array}\right]$	$\left[\begin{array}{ccc}2 / 5 & 1 / 5 & 2 / 5\end{array}\right]$
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 / 2 & 1 / 2\end{array}\right]$
$\left[\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right]$	$\frac{1}{p+q}\left[\begin{array}{ll}q & p\end{array}\right]$ for $p+q>0$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$	$\left[\begin{array}{cc}p & 1-p\end{array}\right]$ for every $0 \leq p \leq 1::$ non-unique!

Stationary PMF of a Markov chain

Stationary PMF need not be unique

$$
\mathcal{P}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 1
\end{array}\right]
$$

has a 2-fold degenerate unit eigenvalue. Linear combinations $\pi=w_{1} \pi_{1}+w_{2} \pi_{2}$ of

$$
\begin{aligned}
& \pi_{1}=\left[\begin{array}{lll}
3 / 4 & 0 & 1 / 4
\end{array}\right] \\
& \pi_{2}=\left[\begin{array}{lll}
2 / 3 & 0 & 1 / 3
\end{array}\right]
\end{aligned}
$$

with $w_{1}, w_{2} \geq 0, w_{1}+w_{2}=1$ are all stationary PMFs of \mathcal{P}.

Example from Sec. 6.2 in http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf

Stationary PMF of a Markov chain

Not every Markov chain necessarily has a stationary PMF

Stationary PMF of a Markov chain

Not every Markov chain necessarily has a stationary PMF

Relationship between stationary and limiting PMFs

Limiting PMFs are stationary, but not vice versa

Markov chains with a unique stationary limiting PMF

A class of Markov chains called ergodic (irreducible) or regular chains.

For details:

- Introduction to Probability by Grinstead \& Snell, American Mathematical Society (1997) Sec. 11.3
- http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf
- https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf

This class is at the heart of Markov chain Monte Carlo (MCMC) methods.

Connection with sampling and "simulation"

Markov chain Monte Carlo (MCMC) methods

Sampling from (and integrating with respect to) an arbitrary high-dimensional PDF / PMF f is done by setting up a Markov chain that has f as its unique stationary limiting distribution.

Master equation and stationarity

Change in the probability of ith state between t and $t+1$

$$
\begin{aligned}
p_{i}(t+1)-p_{i}(t) & =\sum_{j=1}^{k} p_{j}(t) \mathcal{P}_{j i}-p_{i}(t) \times 1 \\
& =\sum_{j=1}^{k} p_{j}(t) \mathcal{P}_{j i}-p_{i}(t) \times\left(\sum_{j=1}^{k} \mathcal{P}_{i j}\right) \\
& =\sum_{j=1}^{k} p_{j}(t) \mathcal{P}_{j i}-\sum_{j=1}^{k} p_{i}(t) \mathcal{P}_{i j} \\
& =(\text { Net inflow into state } i)-(\text { Net outflow from state } i) .
\end{aligned}
$$

If p is stationary, then LHS $=0$ for every state i; i.e., net inflow into and net outflow out of state i are balanced.

Master equation and stationarity

Same argument, but starting with stationarity this time. Suppose $\pi=\pi \mathcal{P}$. Then

$$
\begin{aligned}
\pi_{i} & =\sum_{j=1}^{k} \pi_{j} \mathcal{P}_{j i} \\
1 \times \pi_{i} & =\sum_{j=1}^{k} \pi_{j} \mathcal{P}_{j i} \\
\left(\sum_{j=1}^{k} \mathcal{P}_{i j}\right) \times \pi_{i} & =\sum_{j=1}^{k} \pi_{j} \mathcal{P}_{j i} \\
\sum_{j=1}^{k} \mathcal{P}_{i j} \pi_{i} & =\sum_{j=1}^{k} \pi_{j} \mathcal{P}_{j i}
\end{aligned}
$$

Net probability outflow from state $i=$ Net probability inflow into state i
Stationarity of π can thus be viewed as balance of inflow and outflow of probabilities. Rearranging the above, one gets the Master equation:

$$
\sum_{j=1}^{k}\left(\mathcal{P}_{i j} \pi_{i}-\pi_{j} \mathcal{P}_{j i}\right)=0 \text { for each } i
$$

Condition of detailed balance

Master equation

$$
\sum_{j=1}^{k}\left(\mathcal{P}_{i j} \pi_{i}-\pi_{j} \mathcal{P}_{j i}\right)=0 \text { for each } i
$$

One possible way in which the Master equation will hold true is if each term above is separately $=0$; i.e.,

$$
\mathcal{P}_{i j} \pi_{i}-\pi_{j} \mathcal{P}_{j i}=0 \text { for each pair of states } i, j
$$

This is called the condition of detailed balance: It is sufficient to ensure stationarity of f, but not necessary.

This condition is at the heart of Markov chain Monte Carlo (MCMC) methods.

