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PMF over the state space X

Probability of observing state i at time ¢t,

pi(t) = P(Xe =)

PMF over the state space X = {1,..., k} at time t:

p(t) = (p(t), -, pPk(t))

with

k
> pi(t) =1
i=1



PMF over the state space X

Interpretation
e Imagine a very large ensemble (i.e., collection) of identical
systems described/modeled by the same Markov chain (TPM).

e Each system evolves independently under the same dynamics
described by the TPM.

e Take a snapshot of the ensemble at time t.

e Then p;(t) ~ the proportion of systems in state i.



Evolution of the PMF over the state space X

How does p(t) evolve over one time step?

Total probability of state / at time t + 1:

k
pi(t+1) = P(Xey1=1i)=> P(Xey1 = ilXe = j) x P(X; =)
j=1

= ZPJI X PJ ij X 7)ji = (p(t) X P)I

Hence
p(t+1) = p(t) x P.
Note
o p(t) = (pi(t),...,pk(t)) is interpreted as a row vector.
e The equation is linear in p.

e p(t) x P is a row vector - square matrix multiplication.



Evolution of the PMF over the state space X

How does p(t) evolve over time t =1,2,...7

p(t) = p(t—1)xP
= (p(t—2)x P) x P = p(t —2) x P?

= p(1) x Pt L.

Note
e State space X ={1,...,k},and t=1,2,....
o p(t) = (pa(t),- ... pk(2)) =

row vector representing the PMF over X at time t.

e The equation is linear in p.
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Evolution of the PMF: Numerical example
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Evolution of the PMF: Numerical example
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Evolution of the PMF: Numerical example
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Evolution of the PMF: Analytical example

Suppose

1-p p } .
o P = with 0 < p,qg < 1.

ep(l)=[a 1—a|with0<a<l1.

It can be shown that!
p_ 1 [q p]+(1—p—q)t{ p —p]
p+q | d P p+q —q q

1
i Pt = |
t—00 p+gq

www.probabilitycourse.com /chapterl1/11_2_6_stationary_and_limiting_distributions/php
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Limiting PMF of a Markov chain

Definition. A PMF 7 over the state space & is called limiting PMF if
= tlim pi(t) for every 1 < i < k; i.e., if the sequence of PMFs
—00

p(1) = (pu(1),...,p(1))
p(2) = (p1(2),---,px(2))

converges to ™ = (71, ..., Tk).
Markov matrix P limiting PMF 7
1/2 1/4 1/4
1/2 0 1/2 [2/5 1/5 2/5 ]
1/4 1/4 12

1—
{ qp p } ﬁ[q p]forp+q>0



Limiting PMF of a Markov chain

Given

e the linearity of the PMF evolution equation

p(t) = p(1)P*!

e that p(1) is an arbitrary PMF,

the only way in which a PMF 7 = (71,...,7k) can be a limiting
distribution is if

m™ T2 ... Tk
T T2 ... Tk

lim Pt =

t—00

m™T T2 ... Tk



Limiting PMF of a Markov chain

Not every Markov chain necessarily has a limiting PMF

See examples in

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf
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Stationary PMF of a Markov chain

Definition. A PMF 7 over the state space X is called stationary if

T =7P.

Stationarity = 7 is a left eigenvector of P with eigenvalue 1.



Markov matrix P

Stationary PMF of a Markov chain

stationary PMF 7

[1/2 1/4 1/4

/2 0 1/2 ] [2/5 1/5 2/5 ]
| 1/4 1/4 1)2

‘1)” [1/2 1/2]
'1qplfq] L lq plforptq>0

O =
= O
| I

[ p 1—p } for every 0 < p <1 :: non-unique!



Stationary PMF of a Markov chain

Stationary PMF need not be unique

1 0 0
P=11/3 1/3 1/3
0 0 1

has a 2-fold degenerate unit eigenvalue. Linear combinations
T = Wy + womp of

m = [3/4 0 1/4]
m = [2/3 0 1/3]
with wy, wo > 0, wy + wp = 1 are all stationary PMFs of P.

Example from Sec. 6.2 in http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf
https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution
https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf
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https://www.quora.com/In-what-case-do-Markov-Chains-not-have-a-stationary-distribution
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Stationary PMF of a Markov chain

Not every Markov chain necessarily has a stationary PMF
1 1 1 1
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Stationary PMF of a Markov chain

Not every Markov chain necessarily has a stationary PMF
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Relationship between stationary and limiting PMFs

Limiting PMFs are stationary, but not vice versa

https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf
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Markov chains with a unique stationary limiting PMF

A class of Markov chains called ergodic (irreducible) or regular
chains.

For details:

® Introduction to Probability by Grinstead & Snell, American Mathematical
Society (1997) Sec. 11.3

® http://wwwf.imperial.ac.uk/~ejm/M354/NOTES3.pdf

® https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf

This class is at the heart of Markov chain Monte Carlo (MCMC)
methods.


https://math.dartmouth.edu/~prob/prob/prob.pdf
https://math.dartmouth.edu/~prob/prob/prob.pdf
http://wwwf.imperial.ac.uk/~ejm/M3S4/NOTES3.pdf
https://www.math.ucdavis.edu/~gravner/MAT135A/resources/lecturenotes.pdf

Connection with sampling and “simulation”

Markov chain Monte Carlo (MCMC) methods

Sampling from (and integrating with respect to) an arbitrary
high-dimensional PDF / PMF f is done by setting up a Markov
chain that has f as its unique stationary limiting distribution.



Master equation and stationarity

Change in the probability of ith state between t and t + 1
pi(t+1) —pi(t) = ZPJ —pi(t) x1

= ij pi(t) x Zpij

j=1

= Z pi(t)Pji — Z pi(t)P.

= (Net inflow into state i) — (Net outflow from state /).

If p is stationary, then LHS = O for every state /; i.e., net inflow into and
net outflow out of state / are balanced.



Master equation and stationarity

Same argument, but starting with stationarity this time. Suppose m = 7wP. Then
k
T = ZWJPJ,-
j=1
k
1xm = Zﬂj'Pj[
j=1

k

k
Z 'P,’j X i = Z 71']771','
j=1 J=1
k k
Z Pimi = Z ;i Pii
j=1 j=1

Net probability outflow from state i = Net probability inflow into state i

Stationarity of 7 can thus be viewed as balance of inflow and outflow of probabilities.
Rearranging the above, one gets the Master equation:

K
Z (Pijmi — mjPji) = 0 for each i.



Condition of detailed balance

Master equation

k
Z (Pjmi — mjPji) = 0 for each i.
j=1

One possible way in which the Master equation will hold true is if
each term above is separately = 0; i.e.,
Pjjmi — mjPji = 0 for each pair of states i, .

This is called the condition of detailed balance: It is sufficient to
ensure stationarity of f, but not necessary.

This condition is at the heart of Markov chain Monte Carlo
(MCMC) methods.



