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Example 1

Random walk with 5 positions

1 2 3 4 5

q q q

p p p

1 1

P =

1 2 3 4 5


1 1 0 0 0 0
2 q 0 p 0 0
3 0 q 0 p 0
4 0 0 q 0 p
5 0 0 0 0 1

p + q = 1



Example 2

Gambler’s ruin

• A gambler wins or loses 1 bitcoin with probabilities p and q
respectively; p + q = 1.

• Results of successive bets are independent.

• Initial fortune: k bitcoins.

• Stopping rule: When ruined (0) or on making a fortune (N).

• What is the probability of reaching N from k?

Assume that the other player (bank, casino, etc.) is capable of
paying N bitcoins.

Introduction to Probability by Grinstead & Snell, American Mathematical Society (1997) Sec. 11.2 Exercises 23-25

https://math.dartmouth.edu/~prob/prob/prob.pdf


Example 2

Gambler’s ruin

This is a homogeneous absorbing Markov chain with states
0, . . . ,N:

• If the current fortune is m, the next bet can only lead to
m − 1 or m + 1; i.e., outcome of the next bet is decided
completely by the current fortune.

• Probabilities p and q do not change from bet to bet.

• The betting game ends on reaching a fortune of either 0 or N.

Introduction to Probability by Grinstead & Snell, American Mathematical Society (1997) Sec. 11.2 Exercises 23-25
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Example 2

Gambler’s ruin

0 1 2 · · · N − 2 N − 1 N

q q q q q

p p p p p

1 1

P =

0 1 2 · · · N − 2 N − 1 N



0 1 0 0 · · · 0 0 0
1 q 0 p · · · 0 0 0
2 0 q 0 · · · 0 0 0
...

...
...

...
...

...
...

...
N − 2 0 0 0 · · · 0 p 0
N − 1 0 0 0 · · · q 0 p

N 0 0 0 · · · 0 0 1
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Example 3

Army of the Dead

R

S I

D

α

βγ

α′ β′

γ′

δ

S I R D


S α′ α 0 0 α+ α′ = 1
I 0 β′ β δ β + β′ + δ = 1

R γ 0 γ′ 0 γ + γ′ = 1

D 0 0 0 1



Example 4

Reason for Hope :: Vaccine providing lifelong immunity

R

S I

DV

α

βγ

α′ β′

γ′

δε

ε′

S I R D V


S α′ α 0 0 ε α+ α′ + ε = 1
I 0 β′ β δ 0 β + β′ + δ = 1

R γ 0 γ′ 0 ε′ γ + γ′ + ε′ = 1
D 0 0 0 1 0
V 0 0 0 0 1



Absorbing Markov chain

Definition. A state (say, the ith) of a Markov chain is called
absorbing if it is impossible to leave it (i.e., Pii = 1).

Definition. A Markov chain is absorbing if it has at least one
absorbing state, and if from every state it is possible to go to an
absorbing state (not necessarily in one step).

Definition. In an absorbing Markov chain, a state which is not
absorbing is called transient.

Introduction to Probability by Grinstead & Snell, American Mathematical Society (1997) Sec. 11.2
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Canonical form of the tpm

Rearrange states as { t TRansient states, r ABsorbing states }

P =

TR AB[ ]
Q R TR

0 I AB

• Q :: t × t :: transitions between transient states

• R :: t × r :: transitions from transient to absorbing states

• 0 :: r × t :: all zeros – i.e., can’t leave any absorbing state

• I :: r × r :: identity matrix



n-step tpm

Show this!

Pn =

TR AB[ ]
Qn SnR TR

0 I AB

Sn = I + Q + . . .+ Qn−1

Note

• I in the Pn matrix is an r × r identity matrix.

• I in the Sn matrix is an t × t identity matrix.



Probability of absorption

Theorem. For an absorbing Markov chain, Qn → 0 as n→∞.
That is, with probability 1, the markov chain gets absorbed.

This is Theorem 11.3 in Introduction to Probability by Grinstead & Snell, American
Mathematical Society (1997).

https://math.dartmouth.edu/~prob/prob/prob.pdf
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The fundamental matrix

Definition. The Fundamental matrix of an absorbing Markov
chain is

N = lim
n→∞

Sn = I + Q + Q2 + . . .

Theorem. For an absorbing Markov chain,

1 The inverse of N is I−Q.

2 Nij is the expected number of times the chain visits transient
state j given that it started in transient state i .

This is Theorem 11.4 in Introduction to Probability by Grinstead & Snell, American
Mathematical Society (1997).

https://math.dartmouth.edu/~prob/prob/prob.pdf
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Time to absorption

Theorem. For an absorbing Markov chain starting in the ith
transient state,

ni =
t∑

j=1

Nij

is the expected number of steps (i.e., time) before being absorbed.

This is Theorem 11.5 in Introduction to Probability by Grinstead & Snell, American
Mathematical Society (1997).

https://math.dartmouth.edu/~prob/prob/prob.pdf
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Probability of absorption

Theorem. For an absorbing Markov chain, the ijth element of the
t × r matrix

B = NR

is the probability of the chain getting absorbed in the jth absorbing
state starting from the ith transient state.

This is Theorem 11.6 in Introduction to Probability by Grinstead & Snell, American
Mathematical Society (1997).

https://math.dartmouth.edu/~prob/prob/prob.pdf
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Gambler’s ruin: Probability of winning a fortune

Gambler’s ruin is an absorbing Markov chain with 0,N as the
absorbing states and 1, . . . , k, . . . ,N − 1 as the transients states.

Proability of winning fortune N starting from initial fortune n

P(reaching N from k) =

{
k/N p = 1/2

(q/p)k−1
(q/p)N−1 p 6= 1/2

where p (q = 1− p) is the probability of winning (losing) a bet.

Introduction to Probability by Grinstead & Snell, American Mathematical Society (1997) Sec. 11.2 Exercise 24
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Gambler’s ruin: Probability of winning a fortune
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Simulating a Gambler’s Ruin chain

gambling.run <- function( N, k, p )

{

sum <- 0; len <- 0

while ( !( sum %in% c( -k, N - k ) ) ) # ruin and fortune respectively

{

sum <- sum + sample( c( +1, -1 ), 1, rep = TRUE , prob = c( p, 1 - p ) )

len <- len + 1

}

c( sum , len )

}

N <- 100 # gambler ’s target fortune

k <- 50 # gambler ’s initial capital

p <- 0.52 # gambler ’s P( winning one bet )

m <- 10000 # of replications / runs

stopifnot( length( N ) == 1, N > 0, N == as.integer( N ),

length( k ) == 1, k > 0, k == as.integer( k ), k < N,

length( p ) == 1, p > 0, p < 1,

length( m ) == 1, m > 0, m == as.integer( m ) )

runs <- t( replicate( m, gambling.run( N, k, p ) ) ) # simulated runs

i <- which( runs[,1] == ( N - k ) ) # fortunes

j <- setdiff( 1:m, i ) # ruins

P.fortune <- length( i ) / m # estimated probability of winning fortune:

# compare number with the exact formula



Gambler’s ruin: Run length distributions
p = 0.48, k = 50,N = 100
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Gambler’s ruin: Run length distributions
p = 0.49, k = 50,N = 100

Run length
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Gambler’s ruin: Run length distributions
p = 0.52, k = 50,N = 100
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