Markov Chains 2

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University

Homogeneous Markov chain

A homogeneous Markov is completely specified by the time-independent state-to-state transition probability matrix TPM

$$
\mathcal{P}=\begin{gathered}
\\
1 \\
2 \\
\vdots \\
k
\end{gathered}\left[\begin{array}{cccc}
P\left(X_{2}=1 \mid X_{1}=1\right) & P\left(X_{2}=2 \mid X_{1}=1\right) & \ldots & P\left(X_{2}=k \mid X_{1}=1\right) \\
P\left(X_{2}=1 \mid X_{1}=2\right) & P\left(X_{2}=2 \mid X_{1}=2\right) & \ldots & P\left(X_{2}=k \mid X_{1}=2\right) \\
\vdots & \vdots & \vdots & \vdots \\
P\left(X_{2}=1 \mid X_{1}=k\right) & P\left(X_{2}=2 \mid X_{1}=k\right) & \ldots & P\left(X_{2}=k \mid X_{1}=k\right)
\end{array}\right]
$$

Rows :: $X_{1}::$ the immediate past (the present)
Columns :: $X_{2}::$ the present (immediate future)
Row \& column labels :: the states of the Markov chain

2-Step TPM

Given the one-step TPM \mathcal{P}, what is the probability of going from state i to state j in 2 steps?

Consider all possible independent paths of reaching j from i in 2 steps:

Path	Probability
$i \rightarrow 1 \rightarrow j$	$P\left(X_{3}=j \mid X_{2}=1\right) \times P\left(X_{2}=1 \mid X_{1}=i\right)$
$i \rightarrow 2 \rightarrow j$	$P\left(X_{3}=j \mid X_{2}=2\right) \times P\left(X_{2}=2 \mid X_{1}=i\right)$
\vdots	\vdots
$i \rightarrow i \rightarrow j$	$P\left(X_{3}=j \mid X_{2}=i\right) \times P\left(X_{2}=i \mid X_{1}=i\right)$
\vdots	\vdots
$i \rightarrow j \rightarrow j$	$P\left(X_{3}=j \mid X_{2}=j\right) \times P\left(X_{2}=j \mid X_{1}=i\right)$
\vdots	\vdots
$i \rightarrow k \rightarrow j$	$P\left(X_{3}=j \mid X_{2}=k\right) \times P\left(X_{2}=k \mid X_{1}=i\right)$

and sum up their probabilities to get $P\left(X_{3}=j \mid X_{1}=i\right)$:

$$
\begin{aligned}
P\left(X_{3}=j \mid X_{1}=i\right)= & P\left(X_{3}=j \mid X_{2}=1\right) P\left(X_{2}=1 \mid X_{1}=i\right) \\
& +P\left(X_{3}=j \mid X_{2}=2\right) P\left(X_{2}=2 \mid X_{1}=i\right) \\
& +\vdots \\
& +P\left(X_{3}=j \mid X_{2}=i\right) P\left(X_{2}=i \mid X_{1}=i\right) \\
& +\vdots \\
& +P\left(X_{3}=j \mid X_{2}=j\right) P\left(X_{2}=j \mid X_{1}=i\right) \\
& +\vdots \\
& +P\left(X_{3}=j \mid X_{2}=k\right) P\left(X_{2}=k \mid X_{1}=i\right) \\
= & \sum_{m=1}^{k} P\left(X_{3}=j \mid X_{2}=m\right) P\left(X_{2}=m \mid X_{1}=i\right) \\
= & \sum_{m=1}^{k} \mathcal{P}_{m j} \mathcal{P}_{i m}=\sum_{m=1}^{k} \mathcal{P}_{i m} \mathcal{P}_{m j}=(\mathcal{P} \times \mathcal{P})_{i j}=\left(\mathcal{P}^{2}\right)_{i j}
\end{aligned}
$$

2-step TPM

2-step TPM

$\mathcal{P}^{2}::$ The 2-step TPM for a homogeneous Markov chain is the square of the 1 -step TРм \mathcal{P}.

Note: This is matrix multiplication. This is not squaring the matrix elementwise.

n-Step TPM

n-step TPM

\mathcal{P}^{n} :: Following similar arguments, induction, etc., one can show that the n-step TPM for a homogeneous Markov chain is the nth power of the 1 -step TPM \mathcal{P}.

Note: This is repeated matrix multiplication. This is not taking powers elementwise.

Simulating a Markov chain

Suppose that

- state space is $\mathcal{X}=\{1,2, \ldots, k\}$
$-k \times k$ TPM \mathcal{P} is given (valid, row-normalized, etc.)

Choose a starting state i_{1} from the state space \mathcal{X}.

Consider the i_{1} th row of \mathcal{P} as a discrete PMF.
Sample a state randomly using this PMF.
Suppose this is state i_{2} from \mathcal{X} at $t=2$.

Consider the i_{2} th row of \mathcal{P} as a discrete PMF.
Sample a state randomly using this PMF.
Suppose this is state i_{3} from \mathcal{X} at $t=3$.
etc. etc. etc.

Simulating a Markov chain

```
is.markov <- function( P )
    {
        # Check whether matrix P is a valid Markov transition probability matrix
        ( is.matrix( P )
            && ( nrow( P ) == ncol( P ) )
            && all( P >= 0 )
            && all( rowSums( P ) == 1 )
        )
    }
sample.mc <- function( n, P, initial = 1)
    {
        # Generate a length-n random realization of a Markov chain
        # starting from given initial state. States of the Markov
        # chain are taken to be 1:ncol( P ).
        stopifnot( is.markov( P ), length( n ) == 1, as.integer( n ) == n, n > 1 )
        states <- 1:ncol( P )
        stopifnot( length( initial ) == 1, initial %in% states )
        mc <- rep( initial, n )
        for ( i in 2:n ) mc[i] <- sample( states, 1, prob = P[mc[i-1],] )
    mc
}
```


Estimating Markov matrix from data

Assume

- homogeneous Markov chain with TPM \mathcal{P}
- $\mathcal{X}=\{1, \ldots, k\}$
- index set $T=\{1,2, \ldots\}$

Data
X_{1}, \ldots, X_{n} : an observed realization (data) of the Markov chain

Unknown parameters

- Initial distribution $P\left(X_{1}=i\right), i=1, \ldots, k$
- Transition probabilities $\mathcal{P}_{i j}=P\left(X_{t}=j \mid X_{t-1}=i\right)$, $i, j=1, \ldots, k$

Estimating Markov matrix from data

Single observation $X_{1} \Longrightarrow$ can't estimate the initial PMF

Estimating Markov matrix from data

Suppose

- $n_{i j}: \#$ of observed $i \rightarrow j$ transitions in one time step
- $n_{i}=\sum_{j=1}^{k} n_{i j}$

These are computed from the data.

Likelihood function (ignoring the initial distribution)

$$
\mathcal{L}(\mathcal{P})=\prod_{i=1}^{k} \prod_{j=1}^{k} \mathcal{P}_{i j}^{n_{i j}}
$$

Estimating Markov matrix from data

Maximize \mathcal{L} with respect to the unknown parameters $\mathcal{P}_{i j}$ subject to the constraints (a) $\mathcal{P}_{i j} \geq 0$ for all i, j and (b) $\sum_{j=1} \mathcal{P}_{i j}=1$ for all i :

$$
\widehat{\mathcal{P}}_{i j}=\left\{\begin{array}{cl}
\frac{n_{i j}}{n_{i}} & \text { if } n_{i}>0 \\
0 & \text { if } n_{i}=0 \text { (i.e., no observed transition from state } i \text {) }
\end{array}\right.
$$

Estimating Markov matrix from data

```
tpm.hat <- function( x, states = NULL )
    {
    # Estimate TPM from Markov chain data x
    x <- as.vector( x )
    if ( is.null( states ) ) states <- unique( x )
    k <- length( states )
    P <- matrix( 0, ncol = k, nrow = k, dimnames = list( states, states ) )
    for ( i in 2: length( x ) ) P[x[i-1],x[i]] <- P[x[i-1],x[i]] + 1
    norm <- 1 / rowSums( P )
    norm[!is.finite( norm )] <- 0
    for (i in 1:k) P[i,] <- P[i,] * norm[i]
    P
}
```


Estimating Markov matrix from data

```
source( 'markov.r' )
source( 'markov-estimation.r' )
# An arbitrary Markov chain whose states are the DNA alphabet
#
# This chain avoids repeated letters AA, CC, GG, TT;
# all other transitions occur with equal probabilities.
states <- c( 'A', 'C', 'G', 'T' )
P <- matrix( 1/3, 4, 4, dimnames = list( states, states ) )
diag( P ) <- 0
stopifnot( is.markov( P ) )
# A random data realization from this Markov chain
n <- 100
x <- sample.mc( n, P, sample( 1:ncol( P ), 1 ) )
x <- rownames( P )[x] # sequence of DNA letters
# Estimate the Markov TPM from this data
P.hat <- tpm.hat( x, rownames( P ) )
# Exercise: compare P and P.hat
# -- for many realizations of data for fixed data size n: boxplots
# -- long-run behaviour of the estimator for increasing n: LLN? CLT?
```


Estimating Markov matrix from data

Estimating Markov matrix from data

Estimating Markov matrix from data

