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Stochastic process

Stochastic process {X; : t € T} :: A collection of random variables
Often written as X(t) = X;

State space X :: The set of values taken by the Rvs X

Index set :: The set T, often interpreted/referred to as “time”

The state space and the index set can be discrete or continuous
depending on the application
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Examples of stochastic processes

e A sequence of 1ID Rvs Xi, Xa,... ~ f is a stochastic process.
State space X': discrete or continuous depending on the Rvs.
Index set T ={1,2,...}.
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Examples of stochastic processes

e Suppose weather is modeled as having states X = {sunny,
cloudy}. Index setis T ={1,2,...} in days. A realization of
this stochastic process might be

sunny, sunny, cloudy, sunny, cloudy, cloudy, ...
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Examples of stochastic processes

o Elllpilica| distributi0| ur Ction
i=1 I

State space X: set [0,1] of values taken by I?,,(t); continuous.
Index set T: set of values taken by t; continuous.
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Joint PDF of a finite-length stochastic process

f(x1)
f(xex)
f(x3]x2, x1)

f(x1,x2,...,Xn)

X X X X

f(Xn|Xn=1,--.,X2,X1)
n

H f(xi|past;)

i=1

where
past; = xj—1,...,X2,X1

and
past; = {}
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We will assume

discrete & finite state space
X =A{1,...,k}
index set

T=1{1,2,..)



Markov chain

Definition. The process {X,, : n € T} is a called Markov chain if
P(xn|x1, .-y Xn—1) = P(Xn|Xn—1)

forall ne€ T and for all x € X.

The present (n) depends only on the immediate past (n — 1).
The present is conditionally independent of the past.

A Markov chain is memoryless.
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Markov chain

RA Howard, Dynamic Probabilistic Systems, vol. 1 (NY: John Wiley and Sons, 1971)



Markov chain

Joint PMF of a Markov chain Xi,..., X,

P(x1,...,xn) = P(xa)P(x2|x1)P(x3|x2) ... P(Xn|xn—1)

— P(Xl) H P(X,'|X,',1).
i=2
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Markov chain

Complete specification of a finite portion of a Markov chain
requires specifying

the initial PMF P(x1)

and the

transition probabilities P(xz|x1), P(x3|x2), ..., P(Xn|Xn—1)-
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Homogeneous Markov chain

Definition. If P(x,|x,—1) is independent of n (i.e., does not
change from time to time), the Markov chain is called a
homogeneous Markov chain.



Homogeneous Markov chain

This means that
P(xp = i|xp—1 =J) = P(xp—1 = i|xp—2=J) = ... = P(x2 = i|x1 =)
for every pair of states i/, j.

That is, the transition probabilities do not change with time.
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Homogeneous Markov chain

A homogeneous Markov is completely specified by the
time-independent state-to-state transition probability matrix
(AKA Markov matrix, stochastic matrix)

1 2 k
1 PXe=1X1=1) PXx=2X=1) ... P(Xa=k|X =1)
2 [PXo=1X1=2) PXx=2X,=2) ... P(Xa=klX3=2)

P= . : : : :
k LPOo=1X1=k PCG=2Xi=k) ... P(Xo=k|XL=k)

Rows :: Xj :: the immediate past (the present)
Columns :: Xy :: the present (immediate future)

Row & column labels :: the states of the Markov chain



Homogeneous Markov chain

i, jth element
Pij=P(Xo=jlX1=1i)>0

represents the probability that the Markov chain makes a transition
from state / to state j in one time step.

Notice the opposite ordering of i,j on the two sides of the above equation. We will

stick to this convention.

A property (aka row normalization) of the TPM:
k
ZPU =1.
j=1
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Homogeneous Markov chains: Example 1

On any day, a machine can be in one of the two states operational, or broken. If
operational, it may break down the next day with probability p (0 < p < 1). If broken,
it may be repaired by the next day with probability g (0 < g < 1). This behaviour does
not change on a day-to-day basis, nor does it depend on the history of the machine.

State space X = { operational, broken } :: discrete, finite
Index set T = { 1, 2, ...}, denoting days from the start date :: discrete

Let us assume that this is a Markov chain (i.e., only the immediate past determines
the present).

This is a homogeneous Markov chain because the probabilities g, p do not depend on
the time index (day).

operational  broken
operational 1—p P

P= broken q 1—gq

Introduction to Stochastic Processes by Hoel, Port & Stone, Houghton Mifflin (1972)



Homogeneous Markov chains: Example 2

1D discrete random walk over integers {1,...,5} with absorbing end points: Except
for the two end points (1,5), the probabilities for left and right moves (1 unit) from

the current location are p and 1 — p respectively. The random walker stays at an end
point forever if it reaches there.

State space X = { 1, ..., 5 } :: discrete, finite
Index set T=1{1, 2, ...} :: discrete

This is a Markov chain because only the current location determines the next location
of the random walker.

This is a homogeneous Markov chain because the probability p does not depend on
the time index.

1 2 3 4 5

1 1 O 0 0 0

2 |p 0 1—p 0 0

P= 3 |0 p 0 1—-p 0
4 10 O P 0 1—p

5 Lo O 0 0 1



Homogeneous Markov chains: Example 3

Each time a certain horse runs in a three-horse race, he has probability 1/2 of winning,
1/5 of coming in second, and 3/10 of coming in third, independent of the outcome of
any previous race. This is an independent trials process, but it can also be considered
a homogeneous Markov chain with the TPM

win  second third

win [1/2 1/5 3/10

P = second |1/2 1/5 3/10
third 11/2 1/5 3/10

Independence — identical rows of the TPM
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Homogeneous Markov chains: Example 4

A Markov model of an SIR epidemic
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More examples of homogeneous Markov chains

e Introduction to Probability by Grinstead & Snell, American
Mathematical Society (1997)

e Introduction to Stochastic Processes by Hoel, Port & Stone,
Houghton Mifflin (1972)

e Umpteen resources on the internet!
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