Sampling via Transformations of the Uniform

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University

LCG \rightarrow Uniform $\langle 0,1\rangle$

- Linear congruential generator

$$
X_{n+1}=\left(a X_{n}+c\right) \quad \bmod M
$$

All integer arithmetic: fast and efficient.

- Uniform RNs
- Over $[0,1): U=X / M$
- Over $[0,1]: U=X /(M-1)$
- Over $(0,1]: U=(X+1) / M$
- Over $(0,1): U=(X+1) /(M+1)$

$$
\text { / } \equiv \text { real division. }
$$

Although we pretend to be dealing with a continuous interval, in practice, U is represented as a representable floating-point number, and representable floating-point numbers make a discrete and finite set.

Scrambled eggs

Uniformly scrambled
Under gravity

Simple transformations of the Uniform

Uniform $\langle 0,1\rangle \rightarrow$ Uniform $\langle a, b\rangle$

$$
a=-1, b=2
$$

Define

$$
U^{\prime}=(b-a) U+a .
$$

If

Sampling the d-dimensional hypercube $[0,1]^{d}$ uniformly

- Assume independence in the Uniform[0,1] RN stream U_{1}, U_{2}, \ldots
- Consider successive d-tuples as points in the d-dimensional space.
- Under assumption of independence, the joint density of d-tuples $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is uniform over $[0,1]^{d}$.

Sampling the d-dimensional hypercube $[0,1]^{d}$ uniformly

Sampling the d-dimensional hypercube $[0,1]^{d}$ uniformly

Uniform $[0,1) \rightarrow$ UniformInteger $[0, k-1]$

Let

$$
I=\lfloor k U\rfloor
$$

If

$$
U \sim \text { Uniform }[0,1)
$$

then
I has discrete uniform distribution over the integer set $\{0, \ldots, k-1\}$.
$\lfloor x\rfloor$: floor of x, i.e., largest integer $\leq x$.
Under the $\lfloor k U\rfloor$ operation, probabilities accumulate at integer values $\{0, \ldots, k-1\}$. Visually,

$$
[\longleftarrow)[\leftarrow)[\leftarrow)(\longleftarrow)[\leftarrow)(\leftarrow)
$$

It may be best to do this using an LCG itself, if possible.

Discrete random variable with prespecified PMF

Biased coin toss: Bernoulli(p) with $p=0.6$

- Partition $[0,1]$ into two events with probabilities 0.6 and 0.4 .
- Generate $u \sim \operatorname{Uniform}[0,1]$.
- Outcome:

Head if $u \leq 0.6$, and Tail otherwise

Discrete random variable with prespecified PMF

Four states that occur with probabilities $p=(0.4,0.3,0.2,0.1)$

- Partition $[0,1]$ into 4 events with given probabilities.
- Generate $u \sim$ Uniform $[0,1]$.
- Outcome $=1$ if RN $u \leq p_{1}, 2$ if $p_{1}<u \leq p_{1}+p_{2}$, 3 if $p_{1}+p_{2}<u \leq$ $p_{1}+p_{2}+p_{3}$, and 4 otherwise.
- Use fast look-up methods to ensure efficiency.

Discrete random variable with prespecified PMF

Empirical proportions of $1, \ldots, 6$ for a non-uniform 6 -faced die $p=(0.3,0.15,0.05,0.05,0.15,0.3)$
$\mathrm{n}=10$

$\mathrm{n}=1000$

$$
n=100
$$

More examples of discrete sampling problems

Specific and general methods for a wide range of sampling problems exist.

- Binomial, Poisson, Geometric, Multinomial, ...
- Sampling without replacement, random permutation, ...

Brian D. Ripley, Stochastic Simulation, Wiley (1987)
Luc Devroye, Non-uniform Random Variate Generation, Springer (1986)

Uniform $\langle 0,1\rangle \rightarrow$ continuous univariate distributions

Given the ability to generate Uniform $\langle 0,1\rangle$ RNs,
how do we generate RNs distributed as some continuous univariate distribution f ?

Sampling via transformation

Notation

- $U \sim$ Uniform $\langle 0,1\rangle$.
- PDF $f_{X}(x)$: Target PDF which we wish to sample from.
- $\operatorname{CDF} F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t . f_{X}(x)=\frac{d F_{X}(x)}{d x}$.
- $F_{X}(x)$ is assumed 1-to-1 and hence invertible.
- $F_{X}^{-1}(x)$ is called the quantile function.

For invertible F_{X} :
$F_{X}^{-1}\left(F_{X}(x)\right)=x$ and $F_{X}\left(F_{X}^{-1}(u)\right)=u$.

Sampling via transformation

Sampling prescription

- Generate $U_{1}, \ldots, U_{N} \sim$ Uniform $[0,1]$
- $X_{i}=F_{X}^{-1}\left(U_{i}\right)$

Claim
$X_{1}, \ldots, X_{N} \sim f_{X}$

Sampling via transformation

If this claim is correct, then this prescription amounts to, e.g.,

```
# target PDF function
pdf <- 'norm' # any distribution for which dpqr quartet is available
# target {dq} functions
qf <- get( paste( 'q', pdf, sep = ', ) )
df <- get( paste( 'd', pdf, sep = ', ) )
# target RNs
x <- qf( runif( 10000) ) # <<<<<<<<<<<<<
# visual verification via histogram
pdf( 'inverse-cdf-method.pdf' )
    hist( x, 'FD', freq = FALSE, col = 'gray', border = 'white' )
    curve( df, from = min( x ), to = max ( x ), add = TRUE, col = 'red' )
dev.off()
```


Sampling via transformation

Histogram of x

Sampling via transformation

How intervals map under
$F_{X}^{-1}(U)$

- $\operatorname{Beta}(2,2):$ $f_{X}(x) \propto$ $x(1-x)$
- Uniform U-density \rightarrow
X-density concentrated around $X=0.5$

Sampling via transformation

How intervals map under $F_{X}^{-1}(U)$

- $\operatorname{Beta}\left(\frac{1}{2}, \frac{1}{2}\right)$:
$f_{X}(x) \propto$
$\frac{1}{\sqrt{x(1-x)}}$
- Uniform

U-density \rightarrow
X-density concentrated around
$X=0,1$

Why would this work?

Argument based on the CDF
with some abuse of notation!

Let $X=F_{X}^{-1}(U)$. Then,

$$
\begin{aligned}
\mathrm{CDF} \text { of } X \text { at } x & =P\{X \leq x\} \\
& =P\left\{F_{X}^{-1}(U) \leq x\right\} \\
& =P\left\{U \leq F_{X}(x)\right\} \\
& =\operatorname{CDF} \text { of Uniform }[0,1] \text { evaluated at } F_{X}(x) \\
& =F_{X}(x)
\end{aligned}
$$

Last step follows from
$P(U \leq u)=u$ for $0 \leq u \leq 1$, and that $0 \leq F_{X}(x) \leq 1$.

Therefore, $X=F_{X}^{-1}(U)$ has the desired PDF $f_{X}(x)$ and $\operatorname{CDF} F_{X}(x)$.

Why would this work?

Argument based on RV transformation theory

- Let $X=r(U)$
- If r is strict monotone (increasing or decreasing), hence 1-to-1, then it is invertible; i.e., there exists r^{-1} such that $r^{-1}(r(u))=u$.
- Then

$$
f_{X}(x)=f_{U}\left(r^{-1}(x)\right)\left|\frac{d r^{-1}(x)}{d x}\right| .
$$

- $f_{U}(\cdot)=1$ (ignoring $f_{U}(u)=0$ when $u<0$ or $u>1$)

$$
\begin{aligned}
& \longrightarrow f_{X}(x)=\frac{d r^{-1}(x)}{d x} \text { (ignoring sign) } \\
& \longrightarrow \int^{x} f_{X}\left(x^{\prime}\right) d x^{\prime}=r^{-1}(x) \text { (notice that LHS }=F_{X}(x) \text {) } \\
& \longrightarrow r(\cdot)=F_{X}^{-1}(\cdot)
\end{aligned}
$$

Illustration: $\operatorname{Exp}(\lambda)$

- Target PDF: $f_{X}(x)=\lambda^{-1} \exp \left(-\frac{x}{\lambda}\right)$ for $x \geq 0$
- Find the CDF: $F_{X}(x)=1-\exp \left(-\frac{x}{\lambda}\right)=r^{-1}(x)=u$
- Solve $u=1-\exp \left(-\frac{x}{\lambda}\right)$ for $x \Longrightarrow x=-\lambda \log (1-u)$

The required $U \rightarrow X$ transformation is

$$
X=r(U)=-\lambda \log (1-U) \equiv-\lambda \log (U)
$$

The last \equiv equivalence: U and $1-U$ are both Uniform $\langle 0,1\rangle$.

Illustration: Cauchy

- Target PDF: $f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ for $-\infty<x<+\infty$
- Find the CDF: $F_{X}(x)=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}(x)=r^{-1}(x)=u$
- Solve $u=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}(x)$ for $x \Longrightarrow x=\tan \left(\pi\left(u-\frac{1}{2}\right)\right)$

The required $U \rightarrow X$ transformation is

$$
X=r(U)=\tan \left(\pi\left(U-\frac{1}{2}\right)\right)
$$

Illustration: Weibull (λ, k)

- Target PDF: $f_{X}(x)=\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} \exp \left(-\left(\frac{x}{\lambda}\right)^{k}\right) \quad$ for $x \geq 0$
- Find the CDF: $F_{X}(x)=1-\exp \left(-\left(\frac{x}{\lambda}\right)^{k}\right)=r^{-1}(x)=u$
- Solve $u=1-\exp \left(-\left(\frac{x}{\lambda}\right)^{k}\right)$ for $x \Longrightarrow x=\lambda(-\log (1-u))^{1 / k}$

The required $U \rightarrow X$ transformation is

$$
X=r(U)=\lambda(-\log (1-U))^{1 / k} \equiv \lambda(-\log (U))^{1 / k}
$$

The last \equiv equivalence: U and $1-U$ are both Uniform $\langle 0,1\rangle$.

Illustration: $\operatorname{Pareto}\left(\alpha, x_{m}\right)$

- Target PDF: $f_{X}(x)=\frac{\alpha}{x}\left(\frac{x_{m}}{x}\right)^{\alpha}$ for $x \geq x_{m}$
- Find the CDF: $F_{X}(x)=1-\left(\frac{x_{m}}{x}\right)^{\alpha}=r^{-1}(x)=u$
- Solve $u=1-\left(\frac{x_{m}}{x}\right)^{\alpha}$ for $x \Longrightarrow x=x_{m}(1-u)^{-\frac{1}{\alpha}}$

The required $U \rightarrow X$ transformation is

$$
X=r(U)=x_{m}(1-U)^{-\frac{1}{\alpha}} \equiv x_{m} U^{-\frac{1}{\alpha}}
$$

The last \equiv equivalence: U and $1-U$ are both Uniform $\langle 0,1\rangle$.

When is inverse-CDF sampling useful?

- For the transformation method / inverse-CDF sampling to work, it should be possible to compute $F_{X}^{-1}(x)$
- efficiently; and
- in a numerically stable fashion.
- Hence, this method is useful when a closed-form expression for the inverse $\operatorname{CDF} F_{X}^{-1}(x)$ is available and is easy to compute.

When is inverse-CDF sampling useful?

This rules out many important distributions that (generally) have no closed-form expressions for CDF or its inverse.

- Normal(0,1)

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}\right\}, \quad-\infty<x<+\infty
$$

- $\operatorname{Beta}(\alpha, \beta)$

$$
f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \quad 0 \leq x \leq 1
$$

Except for special parameters values such as $\alpha=\beta=2$ or $1 / 2$.

- Gamma(k, θ)

$$
f_{X}(x)=\frac{\left(\frac{x}{\theta}\right)^{k-1} \exp \left(-\frac{x}{\theta}\right)}{\theta \Gamma(k)}, \quad x \geq 0 ; k, \theta>0
$$

Univariate Normal(0,1) via the Box-Müller transformation

- Inverse-CDF method cannot be applied directly to the univariate case.
- Fortunately, there is a 2-dimensional transformation for sampling a pair of $\operatorname{Normal}(0,1)$ RVs.
- Given $U_{1}, U_{2} \sim \operatorname{Uniform}(0,1]$, consider the forward transformation $\left(U_{1}, U_{2}\right) \rightarrow\left(X_{1}, X_{2}\right):$

$$
\begin{aligned}
& X_{1} \equiv X_{1}\left(U_{1}, U_{2}\right)=\sqrt{-2 \log \left(U_{1}\right)} \cos \left(2 \pi U_{2}\right) \\
& X_{2} \equiv X_{2}\left(U_{1}, U_{2}\right)=\sqrt{-2 \log \left(U_{1}\right)} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

- The reverse transformation $\left(X_{1}, X_{2}\right) \rightarrow\left(U_{1}, U_{2}\right)$ is

$$
\begin{aligned}
& U_{1} \equiv U_{1}\left(X_{1}, X_{2}\right)=\exp \left(-\frac{1}{2}\left(X_{1}^{2}+X_{2}^{2}\right)\right) \\
& U_{2} \equiv U_{2}\left(X_{1}, X_{2}\right)=\frac{1}{2 \pi} \tan ^{-1}\left(\frac{X_{2}}{X_{1}}\right)
\end{aligned}
$$

Normal $(0,1)$ via the Box-Müller transformation

- Because the transformation is 1-1 and invertible, the joint PDF of $\left(X_{1}, X_{2}\right)$ is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{U_{1}, U_{2}}\left(U_{1}\left(x_{1}, x_{2}\right), U_{2}\left(x_{1}, x_{2}\right)\right)\left|\begin{array}{ll}
\frac{\partial U_{1}}{\partial X_{1}} & \frac{\partial U_{1}}{\partial X_{2}} \\
\frac{\partial U_{2}}{\partial X_{1}} & \frac{\partial U_{2}}{\partial X_{2}}
\end{array}\right|
$$

- $f_{U_{1}, U_{2}}(\cdot, \cdot)=1$
(ignore cases u_{1} or $u_{2}<0$, or u_{1} or $u_{2}>1$)
- Simplification of the |Jacobian determinant| leads to

$$
f_{X_{1}, x_{2}}\left(x_{1}, x_{2}\right)=\left[\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x_{1}^{2}}{2}\right)\right] \times\left[\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x_{2}^{2}}{2}\right)\right]
$$

- Hence, $f_{X_{1}, X_{2}}(\cdot, \cdot) \equiv$ joint PDF of two independent $\operatorname{Normal}(0,1) \mathrm{RV}$ s.
- Therefore, X_{1} and X_{2} both have $\operatorname{Normal}(0,1)$ pdFs.

IID bivariate normal scatter

IID trivariate normal scatter

Sampling from a normal mixture

$$
f_{X}(x)=0.7 \times \phi(x ; 0,1)+0.3 \times \phi(x ; 2.5,1)
$$

Sampling from a normal mixture

A k-component normal/Gaussian mixture has PDF of the form

$$
f_{X}(x)=\sum_{i=1}^{k} \omega_{i} \phi\left(x ; \mu_{i}, \sigma_{i}\right)
$$

where

- ω_{i} : weight of the i th component $\left(\omega_{i} \geq 0\right.$ and $\left.\sum_{j=1}^{k} \omega_{j}=1\right)$.
- μ_{i} : mean of the i th normal component.
- σ_{i} : standard deviation of the i th normal component $\left(\sigma_{i}>0\right)$.
- $\phi(x ; \mu, \sigma): \operatorname{Normal}(\mu, \sigma)$ PDF.
$\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ can be thought of as a discrete PMF (\equiv categorical distribution).

Sampling from a normal mixture

Algorithm
(1) Sample a component from $\{1, \ldots, k\}$ using probabilities $\left\{\omega_{1}, \ldots, \omega_{k}\right\}$. Suppose that this randomly sampled component is the i th.
(2) Sample x from $\phi\left(\cdot ; \mu_{i}, \sigma_{i}\right)$.
(3) Repeat steps $1 \& 2$ as many times as required.

This can be generalized to other mixture PDFs straightforwardly.

Sampling from a normal mixture

$$
f_{X}(x)=0.7 \times \phi(x ; 0,1)+0.3 \times \phi(x ; 2.5,1)
$$

Sampling from multivariate normal

Multivariate $\operatorname{Normal}(\mu, \Sigma)$ PDF

$$
f_{\mathbf{X}}(\mathbf{x})=\left((2 \pi)^{k} \operatorname{det}(\Sigma)\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

where

- x: argument, k-vector
- μ : mean, k-vector
- $\Sigma: k \times k$ symmetric positive definite variance-covariance matrix

Compare with the univariate normal density $f_{X}(x)=(2 \pi)^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(x-\mu) \frac{1}{\sigma^{2}}(x-\mu)\right)$

Sampling from multivariate normal

(1) Find a matrix A such that $\Sigma=A A^{T}$ A common choice: Cholesky factorization of Σ
(2) Generate random vector $\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right)$ of IID $\mathrm{N}(0,1)$ random numbers
(3) Compute $\mathbf{x}=\boldsymbol{A} \mathbf{z}+\mu:: \mathbf{x} \sim \operatorname{Normal}(\mu, \Sigma)$
(4) Repeat steps 2-3 as many times as required

Sampling from multivariate normal

An R implementation

```
mvrnorm <- function( n, mu, Sigma )
    {
    # Multivariate normal random vectors via Cholesky factorization.
    # Assumption: Sigma is a symmetric positive definite matrix.
    stopifnot( is.matrix( Sigma ), is.vector( mu ),
    ncol( Sigma ) == nrow( Sigma ),
    length( mu ) == nrow(Sigma ) )
    k <- length( mu )
    A <- t( chol( Sigma ) ) # assume symmetric positive definite Sigma
    t( replicate( n, c( A %*% rnorm( k ) + mu ) ) ) # n X k matrix
}
```


Sampling from multivariate normal

A random sample from $\operatorname{Normal}\left(\left(-1,+\frac{1}{2}\right),\left[\begin{array}{ll}+1 & -\frac{1}{2} \\ -\frac{1}{2} & +1\end{array}\right]\right)$

Exploiting connections between distributions

In principle, one can try to exploit connections between probability distributions to devise RNGs

By Ehsan.azhdari - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22628518

Exploiting connections between distributions

In practice, computational effort can be too much, and better alternatives may be available (or need to be devised).

Examples

- From $\operatorname{Normal}(0,1)$ to χ_{p}^{2} (bad idea)

$$
X=\sum_{i=1}^{p} Z_{i}^{2} \sim \chi_{p}^{2} \text { if } Z_{1}, \ldots, Z_{p} \sim \operatorname{Normal}(0,1) .
$$

- From Normal(0,1) to t_{p} (bad idea)

$$
X=\frac{Z}{\sqrt{Y / p}} \sim t_{p} \text { if } Z \sim \operatorname{Normal}(0,1) \text { and } Y \sim \chi_{p}^{2} .
$$

- From $\operatorname{Normal}(0,1)$ to $\log -\operatorname{Normal}(\mu, \sigma)$

$$
X=e^{\mu+\sigma Z} \sim \log -\operatorname{Normal}(\mu, \sigma) \text { if } Z \sim \operatorname{Normal}(0,1) .
$$

References

- James E. Gentle, Random Number Generation and Monte Carlo Methods, Springer (2003).
- Brian D. Ripley, Stochastic Simulation, Wiley (1987).
- Luc Devroye, Non-uniform Random Variate Generation, Springer (1986). http://luc.devroye.org/rnbookindex.html
- Donald Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, Addison-Wesley (1981).

