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LCG → Uniform〈0, 1〉

• Linear congruential generator

Xn+1 = (aXn + c) mod M

All integer arithmetic: fast and efficient.

• Uniform RNs

• Over [0, 1): U = X/M

• Over [0, 1]: U = X/(M − 1)

• Over (0, 1]: U = (X + 1)/M

• Over (0, 1): U = (X + 1)/(M + 1)

/ ≡ real division.

Although we pretend to be dealing with a continuous interval,

in practice, U is represented as a representable floating-point number,

and representable floating-point numbers make a discrete and finite set.



Scrambled eggs

Uniformly scrambled Under gravity



Simple transformations of the Uniform

Uniform〈0, 1〉 → Uniform〈a, b〉

Define

U ′ = (b − a)U + a.

If

U ∼ Uniform〈0, 1〉,

then

U ′ ∼ Uniform〈a, b〉.

a = −1, b = 2
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Sampling the d-dimensional hypercube [0, 1]d uniformly

• Assume independence in the Uniform[0,1] RN stream
U1,U2, . . ..

• Consider successive d-tuples as points in the d-dimensional
space.

• Under assumption of independence, the joint density of
d-tuples (U1,U2, . . . ,Ud) is uniform over [0, 1]d .



Sampling the d-dimensional hypercube [0, 1]d uniformly
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Sampling the d-dimensional hypercube [0, 1]d uniformly
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Uniform[0, 1)→ UniformInteger[0, k − 1]

Let
I = bkUc.

If
U ∼ Uniform[0, 1),

then

I has discrete uniform distribution over the integer set {0, . . . , k − 1}.

bxc: floor of x , i.e., largest integer ≤ x .

Under the bkUc operation, probabilities accumulate at integer values
{0, . . . , k − 1}. Visually,

[←−)[←−)[←−)[←−)[←−)[←−)

It may be best to do this using an LCG itself, if possible.



Discrete random variable with prespecified pmf

Biased coin toss: Bernoulli(p) with p = 0.6
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• Partition [0, 1]
into two events
with probabilities
0.6 and 0.4.

• Generate
u ∼ Uniform[0, 1].

• Outcome:
Head if u ≤ 0.6,
and Tail otherwise



Discrete random variable with prespecified pmf

Four states that occur with probabilities p = (0.4, 0.3, 0.2, 0.1)
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• Partition [0, 1]
into 4 events with
given probabilities.

• Generate
u ∼ Uniform[0, 1].

• Outcome = 1 if
RN u ≤ p1, 2 if
p1 < u ≤ p1 + p2,
3 if p1 + p2 < u ≤
p1 + p2 + p3, and 4
otherwise.

• Use fast look-up
methods to ensure
efficiency.



Discrete random variable with prespecified pmf

Empirical proportions of 1, . . . , 6 for a non-uniform 6-faced die
p = (0.3, 0.15, 0.05, 0.05, 0.15, 0.3)
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More examples of discrete sampling problems

Specific and general methods for a wide range of sampling
problems exist.

• Binomial, Poisson, Geometric, Multinomial, ...
• Sampling without replacement, random permutation, ...

Brian D. Ripley, Stochastic Simulation, Wiley (1987)
Luc Devroye, Non-uniform Random Variate Generation, Springer (1986)



Uniform〈0, 1〉 → continuous univariate distributions

Given the ability to generate Uniform〈0, 1〉 RNs,

how do we generate RNs distributed as

some continuous univariate distribution f ?



Sampling via transformation

Notation

• U ∼ Uniform〈0, 1〉.

• pdf fX (x): Target pdf which we wish to sample from.

• cdf FX (x) = P(X ≤ x) =
∫ x
−∞ fX (t)dt. fX (x) = dFX (x)

dx .

• FX (x) is assumed 1-to-1 and hence invertible.

• F−1
X (x) is called the quantile function.

For invertible FX :

F−1
X (FX (x)) = x and FX

(
F−1
X (u)

)
= u.



Sampling via transformation

Sampling prescription

• Generate U1, . . . ,UN ∼ Uniform[0, 1]

• Xi = F−1
X (Ui )

Claim
X1, . . . ,XN ∼ fX



Sampling via transformation

If this claim is correct, then this prescription amounts to, e.g.,

# target PDF function

pdf <- ’norm’ # any distribution for which dpqr quartet is available

# target {dq} functions

qf <- get( paste( ’q’, pdf , sep = ’’ ) )

df <- get( paste( ’d’, pdf , sep = ’’ ) )

# target RNs

x <- qf( runif( 10000 ) ) # <<<<<<<<<<<<

# visual verification via histogram

pdf( ’inverse -cdf -method.pdf’ )

hist( x, ’FD’, freq = FALSE , col = ’gray’, border = ’white ’ )

curve( df , from = min( x ), to = max( x ), add = TRUE , col = ’red’ )

dev.off()



Sampling via transformation

Histogram of x
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Sampling via transformation

How intervals
map under
F−1
X (U)

• Beta(2, 2):
fX (x) ∝
x(1− x)

• Uniform
U-density
→
X -density
concen-
trated
around
X = 0.5

X = FX
−1(U)
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Sampling via transformation

How intervals
map under
F−1
X (U)

• Beta( 1
2 ,

1
2 ):

fX (x) ∝
1√

x(1−x)

• Uniform
U-density →
X -density
concentrated
around
X = 0, 1

X = FX
−1(U)
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Why would this work?

Argument based on the cdf with some abuse of notation!

Let X = F−1
X (U). Then,

cdf of X at x = P {X ≤ x}

= P
{
F−1
X (U) ≤ x

}
= P {U ≤ FX (x)}
= cdf of Uniform[0,1] evaluated at FX (x)

= FX (x)

Last step follows from
P(U ≤ u) = u for 0 ≤ u ≤ 1, and that 0 ≤ FX (x) ≤ 1.

Therefore, X = F−1
X (U) has the desired pdf fX (x) and cdf FX (x).



Why would this work?

Argument based on RV transformation theory

• Let X = r(U)

• If r is strict monotone (increasing or decreasing), hence 1-to-1,
then it is invertible; i.e., there exists r−1 such that r−1(r(u)) = u.

• Then

fX (x) = fU(r−1(x))

∣∣∣∣dr−1(x)

dx

∣∣∣∣ .
• fU(·) = 1 (ignoring fU(u) = 0 when u < 0 or u > 1)

−→ fX (x) =
dr−1(x)

dx
(ignoring sign)

−→
∫ x

fX (x ′)dx ′ = r−1(x) (notice that LHS = FX (x))

−→ r(·) = F−1
X (·)

Rigorous/detailed proof possible.



Illustration: Exp(λ)

• Target pdf: fX (x) = λ−1 exp
(
− x
λ

)
for x ≥ 0

• Find the cdf: FX (x) = 1− exp
(
− x
λ

)
= r−1(x) = u

• Solve u = 1− exp
(
− x
λ

)
for x =⇒ x = −λ log(1− u)

The required U → X transformation is

X = r(U) = −λ log(1− U) ≡ −λ log(U)

The last ≡ equivalence: U and 1− U are both Uniform〈0, 1〉.



Illustration: Cauchy

• Target pdf: fX (x) = 1
π(1+x2) for −∞ < x < +∞

• Find the cdf: FX (x) = 1
2 + 1

π tan−1 (x) = r−1(x) = u

• Solve u = 1
2 + 1

π tan−1 (x) for x =⇒ x = tan
(
π
(
u − 1

2

))

The required U → X transformation is

X = r(U) = tan

(
π

(
U − 1

2

))



Illustration: Weibull(λ, k)

• Target pdf: fX (x) = k
λ

(
x
λ

)k−1
exp

(
−
(
x
λ

)k)
for x ≥ 0

• Find the cdf: FX (x) = 1− exp
(
−
(
x
λ

)k)
= r−1(x) = u

• Solve u = 1− exp
(
−
(
x
λ

)k)
for x =⇒ x = λ (− log(1− u))1/k

The required U → X transformation is

X = r(U) = λ (− log(1− U))1/k ≡ λ (− log(U))1/k

The last ≡ equivalence: U and 1− U are both Uniform〈0, 1〉.



Illustration: Pareto(α, xm)

• Target pdf: fX (x) = α
x

(
xm
x

)α
for x ≥ xm

• Find the cdf: FX (x) = 1−
(
xm
x

)α
= r−1(x) = u

• Solve u = 1−
(
xm
x

)α
for x =⇒ x = xm (1− u)−

1
α

The required U → X transformation is

X = r(U) = xm (1− U)−
1
α ≡ xmU

− 1
α

The last ≡ equivalence: U and 1− U are both Uniform〈0, 1〉.



When is inverse-cdf sampling useful?

• For the transformation method / inverse-CDF sampling to work, it
should be possible to compute F−1

X (x)

• efficiently; and
• in a numerically stable fashion.

• Hence, this method is useful when a closed-form expression for the
inverse cdf F−1

X (x) is available and is easy to compute.



When is inverse-cdf sampling useful?

This rules out many important distributions that (generally) have no
closed-form expressions for cdf or its inverse.

• Normal(0,1)

fX (x) =
1√

2πσ2
exp

{
− x2

2σ2

}
, −∞ < x < +∞

• Beta(α, β)

fX (x) ∝ xα−1(1− x)β−1, 0 ≤ x ≤ 1

Except for special parameters values such as α = β = 2 or 1/2.

• Gamma(k, θ)

fX (x) =

(
x
θ

)k−1
exp

(
− x
θ

)
θΓ(k)

, x ≥ 0; k, θ > 0



Univariate Normal(0,1) via the Box-Müller transformation

• Inverse-cdf method cannot be applied directly to the univariate
case.

• Fortunately, there is a 2-dimensional transformation for sampling a
pair of Normal(0,1) RVs.

• Given U1,U2 ∼ Uniform(0, 1], consider the forward transformation
(U1,U2)→ (X1,X2):

X1 ≡ X1(U1,U2) =
√
−2 log(U1) cos(2πU2)

X2 ≡ X2(U1,U2) =
√
−2 log(U1) sin(2πU2)

• The reverse transformation (X1,X2)→ (U1,U2) is

U1 ≡ U1(X1,X2) = exp

(
−1

2

(
X 2

1 + X 2
2

))
U2 ≡ U2(X1,X2) =

1

2π
tan−1

(
X2

X1

)



Normal(0,1) via the Box-Müller transformation

• Because the transformation is 1-1 and invertible, the joint pdf of
(X1,X2) is

fX1,X2 (x1, x2) = fU1,U2 (U1(x1, x2),U2(x1, x2))

∣∣∣∣∣∣
∂U1

∂X1

∂U1

∂X2

∂U2

∂X1

∂U2

∂X2

∣∣∣∣∣∣
• fU1,U2 (·, ·) = 1 (ignore cases u1 or u2 < 0, or u1 or u2 > 1)

• Simplification of the |Jacobian determinant| leads to

fX1,X2 (x1, x2) =

[
1√
2π

exp

(
−x2

1

2

)]
×
[

1√
2π

exp

(
−x2

2

2

)]
• Hence, fX1,X2 (·, ·) ≡ joint pdf of two independent Normal(0,1) RVs.

• Therefore, X1 and X2 both have Normal(0,1) pdfs.

Proof above is indicative; subtleties are ignored.



iid bivariate normal scatter
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iid trivariate normal scatter
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Sampling from a normal mixture

fX (x) = 0.7× φ(x ; 0, 1) + 0.3× φ(x ; 2.5, 1)
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Sampling from a normal mixture

A k-component normal/Gaussian mixture has pdf of the form

fX (x) =
k∑

i=1

ωiφ(x ;µi , σi )

where

• ωi : weight of the ith component (ωi ≥ 0 and
∑k

j=1 ωj = 1).

• µi : mean of the ith normal component.

• σi : standard deviation of the ith normal component (σi > 0).

• φ(x ;µ, σ): Normal(µ, σ) pdf.

{ω1, . . . , ωk} can be thought of as a discrete pmf (≡ categorical distribution).



Sampling from a normal mixture

Algorithm

1 Sample a component from {1, . . . , k} using probabilities
{ω1, . . . , ωk}. Suppose that this randomly sampled
component is the ith.

2 Sample x from φ(·;µi , σi ).

3 Repeat steps 1 & 2 as many times as required.

This can be generalized to other mixture pdfs straightforwardly.



Sampling from a normal mixture

fX (x) = 0.7× φ(x ; 0, 1) + 0.3× φ(x ; 2.5, 1)
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Sampling from multivariate normal

Multivariate Normal(µ,Σ) pdf

fX(x) =
(

(2π)kdet (Σ)
)− 1

2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where

• x: argument, k-vector

• µ: mean, k-vector

• Σ: k × k symmetric positive definite variance-covariance
matrix

Compare with the univariate normal density

fX (x) = (2π)−
1
2 exp

(
− 1

2 (x − µ) 1
σ2 (x − µ)

)



Sampling from multivariate normal

1 Find a matrix A such that Σ = AAT

A common choice: Cholesky factorization of Σ

2 Generate random vector z = (z1, . . . , zk) of iid N(0,1)
random numbers

3 Compute x = Az + µ :: x ∼ Normal(µ,Σ)

4 Repeat steps 2-3 as many times as required



Sampling from multivariate normal

An R implementation

mvrnorm <- function( n, mu, Sigma )

{

# Multivariate normal random vectors via Cholesky factorization.

# Assumption: Sigma is a symmetric positive definite matrix.

stopifnot( is.matrix( Sigma ), is.vector( mu ),

ncol( Sigma ) == nrow( Sigma ),

length( mu ) == nrow( Sigma ) )

k <- length( mu )

A <- t( chol( Sigma ) ) # assume symmetric positive definite Sigma

t( replicate( n, c( A %*% rnorm( k ) + mu ) ) ) # n X k matrix

}

http://www.r-project.org/


Sampling from multivariate normal

A random sample from Normal
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Exploiting connections between distributions

In principle, one can try to exploit connections between probability
distributions to devise RNGs

By Ehsan.azhdari - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22628518
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Exploiting connections between distributions

In practice, computational effort can be too much, and better
alternatives may be available (or need to be devised).

Examples

• From Normal(0,1) to χ2
p (bad idea)

X =
∑p

i=1 Z
2
i ∼ χ2

p if Z1, . . . ,Zp ∼ Normal(0, 1).

• From Normal(0,1) to tp (bad idea)

X = Z√
Y/p
∼ tp if Z ∼ Normal(0, 1) and Y ∼ χ2

p.

• From Normal(0,1) to Log-Normal(µ, σ)

X = eµ+σZ ∼ Log-Normal(µ, σ) if Z ∼ Normal(0, 1).
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