Sampling via Transformations of the Uniform

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University

http://cms.unipune.ac.in/~mihir
http://cms.unipune.ac.in/
http://www.unipune.ac.in/

LCG — Uniform(0, 1)

e Linear congruential generator

Xnt1 = (aXp+¢) mod M
All integer arithmetic: fast and efficient.
e Uniform RNs
e Over [0,1): U=X/M
e Over [0,1]: U=X/(M—-1)
e Over (0,1]: U= (X+1)/M
e Over (0,1): U=(X+1)/(M+1)

/ = real division.
Although we pretend to be dealing with a continuous interval,
in practice, U is represented as a representable floating-point number,

and representable floating-point numbers make a discrete and finite set.

Scrambled eggs

6
@ 4,
Vs 92, 2 oeFe
6 6 & o 6

)

o 6% ¥

04°
6 9
) oﬁé@@e

©

Uniformly scrambled

Under gravity

Simple transformations of the Uniform

Uniform(0, 1) — Uniform(a, b)

Define

U'=(b—a)U+a.

U ~ Uniform(0, 1), o

then

-1

U’ ~ Uniform(a, b).

Sampling the d-dimensional hypercube [0, 1] uniformly

e Assume independence in the Uniform[0,1] RN stream
U, Ua,

e Consider successive d-tuples as points in the d-dimensional
space.

e Under assumption of independence, the joint density of
d-tuples (U, U, ..., Uy) is uniform over [0,1]9.

Sampling the d-dimensional hypercube [0, 1]¢ uniformly

1.0

Sampling the d-dimensional hypercube [0, 1]¢ uniformly

1.0

0.0

H0O0 02 04 06 08

.0 02 04 06 08 1.0

Uniform[0, 1) — UniformInteger|[0, k — 1]

Let
I =|kU|.
If
U ~ Uniform|0, 1),
then
I has discrete uniform distribution over the integer set {0,..., k —1}.

|x]: floor of x, i.e., largest integer < x.

Under the | kU] operation, probabilities accumulate at integer values
{0,..., k—1}. Visually,

[l)l—)

It may be best to do this using an LCG itself, if possible.

Discrete random variable with prespecified PMF

Biased coin toss: Bernoulli(p) with p = 0.6

1.0

e Partition [0,1]
into two events
with probabilities
0.6 and 0.4.

PDF
05
|

e Generate
u ~ Uniform[0, 1].

e Outcome:
Head if v < 0.6,
and Tail otherwise

0.0

u]
o)

1

n
U
)
»
i)

Four states that occur with probabilities p = (0.4,0.3,0.2,0.1)

PDF

1.0

0.5

0.0

e Partition [0, 1]
into 4 events with
given probabilities.

e Generate
u ~ Uniform[0, 1].

e Qutcome = 1 if
RN v < p1, 2 if
p1 < u<p1+p2
3ifpr+p<u<
p1+ p2+ p3, and 4
otherwise.

e Use fast look-up
methods to ensure
efficiency.

Discrete random variable with prespecified PMF

Discrete random variable with prespecified PMF

Empirical proportions of 1,...,6 for a non-uniform 6-faced die
p = (0.3,0.15,0.05,0.05,0.15,0.3)

n=10 n =100

Density

00 01 02 03 04
Density

00 01 02 03 04

n=1000 n=10000

Density

00 01 02 03 04
Density

00 01 02 03 04

More examples of discrete sampling problems

Specific and general methods for a wide range of sampling
problems exist.

e Binomial, Poisson, Geometric, Multinomial, ...
e Sampling without replacement, random permutation, ...

Brian D. Ripley, Stochastic Simulation, Wiley (1987)
Luc Devroye, Non-uniform Random Variate Generation, Springer (1986)

Uniform(0, 1) — continuous univariate distributions

Given the ability to generate Uniform(0, 1) RN,
how do we generate RNs distributed as
some continuous univariate distribution f7?

Sampling via transformation

Notation

e U ~ Uniform(0, 1).

e PDF fx(x): Target PDF which we wish to sample from.

ODF Fx(x) = P(X < x) = [*_ f(t)dt. fix(x) = 95,

e Fx(x) is assumed 1-to-1 and hence invertible.

F)?l(x) is called the quantile function.

For invertible Fx:

! (Fx(x)) = x and Fx (F'(u)) = u.

Sampling via transformation

Sampling prescription

e Generate Uy, ..., Uy ~ Uniform[0, 1]

© Xi=Fx'(U)

Claim
Xl,...,XNNfX

Sampling via transformation

If this claim is correct, then this prescription amounts to, e.g.,

target PDF function
pdf <- ’norm’ # any distribution for which dpqr quartet is available

target {dq} functions
qf <- get(paste(’q’, pdf, sep = ’°
df <- get(paste(’d’, pdf, sep

target RNs
x <- qf (runif(10000)) # <<<<<<K<KKK<KL

visual verification via histogram
pdf (’inverse-cdf-method.pdf’)

hist(x, ’FD’, freq = FALSE, col = ’gray’, border = ’white’)

curve(df, from = min(x), to = max(x), add = TRUE, col = ’red’)
dev.off ()

Density

0.4

0.3

0.2

0.1

0.0

Histogram of x

Sampling via transformation

-4

-2

0

T
2

If the
previous
claim is
correct, we
expect to see
something
like this

U
N)
yel
Q

Sampling via transformation

How intervals

map under R S
F (V)
e Beta(2,2): 9 |
fx (x) o
x(1—x) @ |
e Uniform O e A R S
U-density S
%
X-density S A
concen-
trated g
around 0.0 0.2 0.4 0.6 0.8 1.0
X =0.5

X=FHU)

Sampling via transformation

How intervals ° S S
map under 3 ,
—1 :
F() .1 B ,
11 SN | !
L] Beta(? E) ;.
fx()i) X g _
x(1—x) =) B R e AREEN
< |
. o
e Uniform
U-density — N
X-density N e . .
concentrated 1
around o | LN V L
o 0 1
X = 07 1 [T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Why would this work?

Argument based on the CDF with some abuse of notation!

Let X = F (V). Then,

CDF of X at x = P{X <x}
= P{FW) <x}
= P{U< Fx()
= CDF of Uniform[0,1] evaluated at Fx(x)

= Fx(x)

Last step follows from
P(U<u)=ufor0<u<1,andthat 0 < Fx(x) <1.

Therefore, X = F;l(U) has the desired PDF fx(x) and CDF Fx(x).

Why would this work?

Argument based on RV transformation theory

o Let X =r(U)
e If r is strict monotone (increasing or decreasing), hence 1-to-1,
then it is invertible; i.e., there exists r=! such that r=1(r(u)) = v.

e Then
dr_l(x)

dx

fx(x) = fu(r~'(x))

o fU(‘) =1 (ignoring fy(u) = 0 when u <0 or u>1)

d -1
— fx(x) = rd X (ignoring sign)
. / fe(x)dx" = r(x) (notice that LHS — Fx(x))
= Fx'()

Rigorous/detailed proof possible.

[llustration

e Target PDF: fx(x) = A"lexp(—%) for x>0
e Find the CDF: Fx(x)=1—exp(—%) =r"'(x)=u

e Solve u=1—exp(—%) for x = x = —Xlog(1 — u)

The required U — X transformation is

X =r(U)=—Xlog(l - U) =—Xlog(U)

The last = equivalence: U and 1 — U are both Uniform(0, 1).

: Exp(A)

[llustration: Cauchy

e Target PDF: fx(x) = i 1 for — oo < x < +00

— w(14+x?)
e Find the CDF: Fx(x) =3+ 2tan" ! (x) =r7}(x) =u

e Solve u=1+Ltan7!(x) for x = x=tan (7 (u—13))

The required U — X transformation is

Xy~ (= (u-2))

lllustration: Weibull(\, k)

e Target PDF: fx(x) = & (f)k_l exp (— (f)k) for x >0
) =rlx)=u

e Solve u=1—exp (f (%)k) for x = x =X (—log(1l — u))l/k

o Find the cDF: Fx(x) =1 — exp (_ (%)

The required U — X transformation is

X = r(U) = A(~log(1 — U))"* = A (~ log(1))"/*

The last = equivalence: U and 1 — U are both Uniform(0, 1).

lllustration: Pareto(a, x,)

e Target PDF: fx(x) =2 (%m)a for x > xm

e Find the cDF: Fx(x) =1 - (X7'")a =rix)=u

1

e Solve u=1— (%)% for x = x=xp,(1—u) ®

m
X

The required U — X transformation is

X =r(U)=xm(1l- U)fé = xpU ™=

The last = equivalence: U and 1 — U are both Uniform(0, 1).

When is inverse-CDF sampling useful?

e For the transformation method / inverse-CDF sampling to work, it
should be possible to compute Fy *(x)

o efficiently; and
e in a numerically stable fashion.

e Hence, this method is useful when a closed-form expression for the
inverse CDF Fy '(x) is available and is easy to compute.

When is inverse-CDF sampling useful?

This rules out many important distributions that (generally) have no
closed-form expressions for CDF or its inverse.

e Normal(0,1)

1 x?
fX(X): Wexp _Tﬂ 5 —00 < X < 400
e Beta(a, 3)

fx(x) o x* 11 =x)P71 0<x<1
Except for special parameters values such as « = =2 or 1/2.

e Gamma(k,0)

Univariate Normal(0,1) via the Box-Miiller transformation

e |nverse-CDF method cannot be applied directly to the univariate
case.

e Fortunately, there is a 2-dimensional transformation for sampling a
pair of Normal(0,1) RVs.

e Given U;, Uy ~ Uniform(0, 1], consider the forward transformation
(Ul, Uz) — (Xl,Xz)Z

Xl =)(1(U17 U2) = -2 |Og()COS(27TU2)
Xo = Xo(Uy, Un) —2log(U1)sin(27Us)

e The reverse transformation (X1, X2) — (Ui, Uz) is
1
U, = U1(X1,X2) = exp <—2 (X12 +X22)>

1 X
U, = Ur(X1, Xo) = Etan’1 (Xi)

Normal(0,1) via the Box-Miiller transformation

Because the transformation is 1-1 and invertible, the joint PDF of
()(17 X2) iS

ol 9U;
X, X
fX11X2(X1’X2) = fUl,Uz(Ul(XhXQ)a UQ(X17X2))
ou, U
X, X
fu,u(,)=1 (ignore cases uy or up, < 0, or uy or up > 1)

Simplification of the |Jacobian determinant| leads to

Frx (X1, %) = [\/lz?exp (—Xjﬂ X [\/12;“" (_ngﬂ

Hence, fx, x,(+,) = joint PDF of two independent Normal(0,1) RVs.

Therefore, X; and X, both have Normal(0,1) PDFs.

Proof above is indicative; subtleties are-ignored.

IID bivariate

normal scatter

IID trivariate normal scatter

-

y

-1

-2

-3

-3 -2 -1 0 1 2 3

Sampling from a normal mixture

fx(x) = 0.7 x ¢(x;0,1) + 0.3 x ¢(x;2.5,1)

£(x)
0.10 0.15 0.20 0.25 0.30
I I I I |

0.05
I

0.00
L

Sampling from a normal mixture

A k-component normal/Gaussian mixture has PDF of the form

k
() = wig(x; i, i)
i=1

where

e wj: weight of the ith component (w; > 0 and Zle wj =1).
e ;: mean of the jith normal component.
e 0;: standard deviation of the ith normal component (o; > 0).

e ¢(x;p,0): Normal(yu, o) PDF.

{wi,...,wk} can be thought of as a discrete PMF (= categorical distribution).

Sampling from a normal mixture

Algorithm
@ Sample a component from {1,..., k} using probabilities
{wi,...,wk}. Suppose that this randomly sampled

component is the ith.
® Sample x from ¢(-; pi, o).

© Repeat steps 1 & 2 as many times as required.

This can be generalized to other mixture PDFs straightforwardly.

Sampling from a normal mixture

fx(x) = 0.7 x ¢(x;0,1) + 0.3 x ¢(x;2.5,1)

£(x)
0.10 0.15 0.20 0.25 0.30
I I I I |

0.05
I

0.00

(NI A O A A T T N I

Sampling from multivariate normal

Multivariate Normal(yu,) PDF

() = ((2n)fdet (D) exp (~3x- 0T -)

where
e X: argument, k-vector
e 4 mean, k-vector

e Y: k X k symmetric positive definite variance-covariance
matrix

Compare with the univariate normal density
1
f(x) = (2m) " F exp (=1 (x —) S (x —)

Sampling from multivariate normal

® Find a matrix A such that ¥ = AAT

A common choice: Cholesky factorization of ¥

® Generate random vector z = (zi, ..., zx) of 11D N(0,1)
random numbers

©® Compute x = Az + 11 2 x ~ Normal(y, X)

O Repeat steps 2-3 as many times as required

Sampling from multivariate

An R implementation

mvrnorm <- function(n, mu, Sigma)
{
Multivariate normal random vectors via Cholesky factorization.
Assumption: Sigma is a symmetric positive definite matrix.

stopifnot(is.matrix(Sigma), is.vector(mu),
ncol(Sigma) == nrow(Sigma),
length(mu) == nrow(Sigma))

k <- length(mu)
A <- t(chol(Sigma)) # assume symmetric positive definite Sigma

t(replicate(n, c(A %*% rnorm(k) + mu))) # n X k matrix
}

normal

http://www.r-project.org/

Sampling from multivariate normal

_1
A random sample from Normal((—l,-l-%)? [+} _&])
2

X2

X1

Exploiting connections between distributions

In principle, one can try to exploit connections between probability
distributions to devise RNGs

=1

3 xi Bemauli(p)

N
\ =) A
Ko g P=MIN, =k N

-

— N [Fypergeomenic)
\ p=np, gZ=np(1p) n-e e
\ -7

Gy S
-

XuXid)

Uniform(0,1)

avpa)X a=0p=1
Chi-squared(n)

(XaVa)xav2) (unitormab))~
{ /
Vi Ve
o

By Ehsan.azhdari - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22628518

Weibull(a,b)

Double-Exponential(0,\,))

https://en.wikipedia.org/wiki/Relationships_among_probability_distributions
https://en.wikipedia.org/wiki/Relationships_among_probability_distributions
https://en.wikipedia.org/wiki/Relationships_among_probability_distributions
https://commons.wikimedia.org/w/index.php?curid=22628518

Exploiting connections between distributions

In practice, computational effort can be too much, and better
alternatives may be available (or need to be devised).

Examples

e From Normal(0,1) to X,23 (bad idea)
X=3F 27 ~x;if Z1,...,Z, ~ Normal(0, 1).

e From Normal(0,1) to t, (bad idea)
V4 .
X = i tp if Z ~ Normal(0,1) and Y ~ x3.
e From Normal(0,1) to Log-Normal(u, o)
X = ett9Z ~ Log-Normal(y, o) if Z ~ Normal(0,1).

References

James E. Gentle, Random Number Generation and Monte
Carlo Methods, Springer (2003).

Brian D. Ripley, Stochastic Simulation, Wiley (1987).

Luc Devroye, Non-uniform Random Variate Generation,
Springer (1986) http://luc.devroye.org/rnbookindex.html

Donald Knuth, The Art of Computer Programming, Vol 2:
Seminumerical Algorithms, Addison-Wesley (1981).

http://luc.devroye.org/rnbookindex.html

