LCGs, Uniform $<0,1>$, etc.

Mihir Arjunwadkar

Centre for Modeling and Simulation
Savitribai Phule Pune University

Connotations of randomness

A sequence of numbers which

- lacks predictability
- lacks (easily) recognizable pattern or rule
- contains information which cannot be compressed into an equivalent but shorter representation
- is indistinguishable from realizations of a truly random process
- has statistical independence (in some contexts)
- ...

Imprecise as definition, uses circular reasoning,

An operational definition of randomness

Mais quand une regle est fort composée, ce qui luy est conforme, passe pour irrégulier.

But when a rule is extremely complex, that which conforms to it passes for random.

Discourse on Metaphysics (1686)

Generating "random" numbers

We may, therefore, use deterministic means to generate a sequence of numbers that appear random ...

Linear congruential generator

$$
X_{n+1}=\left(a X_{n}+c\right) \quad \bmod M
$$

$$
X_{n}, M, a, c: \text { Integer }
$$

$$
\begin{gathered}
\text { Seed } 0 \leq X_{0}<M \\
\text { Modulus } M \geq 1 \\
\text { Multiplier } 1<a<M \\
\text { Increment } 0 \leq c<M
\end{gathered}
$$

Completely deterministic: Given M, a, c, same seed \Longrightarrow same sequence

Integer arithmetic

Periodicity

- X_{n} is a periodic sequence with maximum cycle length $=M$ because of the modulo operation.
- Bad choice of a, c can lead to the "bad" sequences

For example, $a=c=1$, any $M, X_{0} . M=5, X_{0}=3 \Longrightarrow$
$3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2, \ldots$

- Shorter-than-M cycles

For example, $M=10, a=c=X_{0}=7 \Longrightarrow$
$7,6,9,0,7,6,9,0,7,6,9,0,7,6,9,0,7,6,9,0,7,6,9,0,7, \ldots$

How are the parameters a, c, M chosen?

A LCG has full period M iff
(1) $\operatorname{gcd}(c, M)=1$.
(2) $a \equiv 1 \bmod p$ for each prime factor p of M.
(3) $a \equiv 1 \bmod 4$ if 4 divides M.

Brian D. Ripley, Stochastic Simulation, Wiley (1987)

How are the parameters a, c, M chosen?

Courtesy: Snehal Shekatkar

Serial correlations: Marsaglia lattice

Serial correlations: Marsaglia lattice

http://en.wikipedia.org/wiki/File:Lcg_3d.gif

Breaking serial correlations

Breaking serial correlations

Bays-Durham Shuffle

Figure 1 - Two cycles of a Bays-Durham Shuffle. Internal state consists of the last output of the Random Number Generator (A), the last output of the Bays-Durham Shuffle (B), and a table of random values (C). To generate a new output, an index (E) is created from the last output (B). The value in the table at this index becomes the next output (F). The value at the index is replaced with the current output of the generator (G), and the generator is updated to its next state.

A taxonomy of RNGs

Taxonomy of (Pseudo) Random Number Generators

http://www.sml.ee.upatras.gr/UploadedFiles/07-RNGO-!!!!!random_number_generators.pdf

The initial seed

- /dev/random and /dev/urandom:
- http://sourceware.org/ml/gsl-discuss/2004-q1/msg00071.html
- http://www.2uo.de/myths-about-urandom/
- http://en.wikipedia.org/?title=/dev/random
- Concoct a seed from the machine clock or current time

Distribution of numbers in the LCG sequence

Assuming a full-period LCG, the numbers $0, \ldots, M-1$ occur with equal propensity \Longrightarrow uniform PMF over the set $0, \ldots, M-1$.

Why? Here is a suggestive argument:

- Except the modulo- M operation, the relationship between X_{n} and X_{n+1} is linear. If X_{n} has a uniform PMF, so will X_{n+1}.
- Geometrically, the module- M operation turns the interval $[0, M)$ into a circle by identifying M with 0 . The LCG sequence can be thought of as going round-and-round over this circle with a constant speed and an additive increment at every step.

This can be numerically verified, but this is not a rigorous proof.

LCG \rightarrow Uniform $\langle 0,1\rangle$

Uniform PMF over $0, \ldots, M$ can be transformed to a uniform distribution over $\langle 0,1\rangle$ as

- Over $[0,1): U=X / M$
- Over $[0,1]: U=X /(M-1)$
- $\operatorname{Over}(0,1]: ~ U=(X+1) / M$
- Over $(0,1): U=(X+1) /(M+1)$

Note

- Division operation / \equiv real division.
- Although we pretend to have a continuous interval $\langle 0,1\rangle, U$ is discrete.
- In practice, U is also represented as a representable floating-point number, and rounding may modulate this discreteness further.

Testing for randomness

Testing for randomness

General Perspective

- There is no end to conceivable tests
- A RNG that passes a sequences of tests T_{1}, \ldots, T_{N} need not necessarily pass a new test T_{N+1}
- Conversely, passing some N tests does not guarantee randomness.
- An extensive literature survey:
http://www.ciphersbyritter.com/RES/RANDTEST.HTM

Testing for randomness

- Knuth's spectral test
- DIEHARD
http://stat.fsu.edu/pub/diehard/
- Monkey Tests
http://dieharder.googlecode.com/svn/trunk/doc/monkey_tests.pdf
- dieharder
http://www.phy.duke.edu/~rgb/General/dieharder.php
- TestU01
http://simul.iro.umontreal.ca/testu01/tu01.html
- NIST RNG tools
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
- http://www.cs.fsu.edu/~mascagni/research/testing.html
- ...

Testing for randomness

Empirical/Statistical Tests for Uniformity

- χ^{2} tests on sequence, pairs, k-tuples, ...
- Kolmogorov-Smirnov
- ...

Empirical/Statistical Tests for Independence

- Runs test
- Gaps test
- Permutation tests
- Test for the Pearson correlation coefficient

$$
H_{0}: \rho=0 \text { vs. } H_{1}: \rho \neq 0
$$

LCG implementations

- Mersenne Twister
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://en.wikipedia.org/wiki/Mersenne_twister
- GNU Scientific Library
http://www.gnu.org/s/gsl/
- Rmath standalone library
- SPRNG
http://sprng.cs.fsu.edu/
- Unix/linux RNG: drand48
- Numerical Recipes

Test NR codes thoroughly before using them!

Recommendations

- Use RNGs that have well-understood properties.
- Complex methods are not necessarily better.
- Use well-tested implementations.
- To see if a RNG is good enough for your application:
- Run your application with two very different RNGs and see if they produce the same result.
- Does your application produce results which can be traced back to any patterns related to the RNG?
- Run as many tests as possible for the intended sequence length: http://burtleburtle.net/bob/rand/testsfor.html

References

- Brian D. Ripley, Stochastic Simulation, Wiley (1987).
- James E. Gentle, Random Number Generation and Monte Carlo Methods, Springer (2003).
- Luc Devroye, Non-uniform Random Variate Generation, Springer (1986). http://luc.devroye.org/rnbookindex.html
- Donald Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, Addison-Wesley (1981), or any newer edition.

